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class times

Friday, 10:15 am – 2 pm  at  IMM / RWTH

Contact, website and class days

Course Lecturers: 

Dr. S. Sandlöbes, Prof. R. Svendsen, 

Dr. P. Shanthraj, Dr. S.-L. Wong, Prof. D. Raabe

Notes at:

http://www.dierk-raabe.com/teaching/
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Contact, website and class days

Date / Location Topics Lecturer

21. April 2017
IMM / RWTH

Introduction to materials micromechanics, multiscale problems in micromechanics, case studies, 
crystal structures and defects, relation to products and manufacturing

Raabe

28. April 2017
IMM / RWTH

Discrete and statistical dislocation dynamics, Crystal micromechanics, single crystal mechanics, 
yield surface mechanics, polycrystal models, Taylor model

Raabe

5. May 2017
IMM / RWTH

Athermal phase transformations in micromechanics Wong

12. May 2017
IMM / RWTH

Fracture mechanics, Introduction to FEM Shanthraj

19. May 2017
MPI / Düsseldorf 

Micromechanics of polymers and biological (natural) composites Raabe

26. May 2017
IMM / RWTH

Fatigue of materials Sandlöbes

2. June 2017
IMM / RWTH

Mathematical micromechanics:
Review of elasticity theory

Svendsen

9. June 2017
IMM / RWTH

Volterra dislocation theory Svendsen

16. June 2017
IMM / RWTH

Dislocations and micromechanics in hexagonal materials Sandlöbes

23. June 2017
IMM / RWTH

Dislocation interaction modeling Svendsen

30. June 2017
IMM / RWTH

Partial and extended dislocations Svendsen

7. July 2017
IMM / RWTH

Peierls-Nabarro disocation theory and dislocation core modeling Svendsen



Body centered cubic (bcc) lattice structure
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Crystal dislocations: Relationship between lattice and defects

Why is the crystal lattice relevant for

understanding complex dislocation

structures?

What is the connection between

‚simple ‘ structure data

and complex dislocation structures?
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How frequently do certain crystal structures occur in the PSE?
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FCC: Face centered cubic

close packed, (a)

Hexagonal close packed (a, c) BCC: Body centered cubic (a)

Cu (3.6147) Be (2.2856, 3.5832) Fe (2.8664)

Ag (4.0857) Mg (3.2094, 5.2105) Cr (2.8846)

Au (4.0783) Zn (2.6649, 4.9468) Mo (3.1469)

Al (4.0495) Cd (2.9788, 5.6167) W (3.1650)

Ni (3.5240) Ti (2.506, 4.6788) Ta (3.3026)

Pd (3.8907) Zr (3.312, 5.1477) Ba (5.019)

Pt (3.9239) Ru (2.7058, 4.2816)

Pb (4.9502) Os (2.7353, 4.3191)

Re (2.760, 4.458)

Lattice parameters
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Why is the crystal lattice relevant for

understanding complex dislocation structures?

Stacking fault energy: planar dislocation cores, cross slip, recovery, 

annihilation, Suzuki effect, twinning, strain hardening, stair rod dislocations, 

reactions

Shockley partial dislocations (b = a/6<112>)

Densely packed planes: glide planes; densely packed translation shear

vectors: Burgers vectors

Twinning systems

Crystal dislocations: Relationship between lattice and defects
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Special properties of the 3 main lattice types regarding plasticity defects

BCC: non-close packed planes: pencile glide behavior; multiple 

slip systems:  {110}; {112}; {123}; complex core of dislocation; 

twinning vs. anti-twinning glide sense

FCC: stacking fault energy can vary from very low values (α-Brass- 30 wt% Zn

in Cu; TWIP steels:  ≈ 20 mJ/m2)  to very high values (Al :  ≈ 180 mJ/m2): 

Regarding lattice defects in plasticity FCC and HCP is not a ‘homogeneous‘ or

unique crystal structure

Hex: hcp or hex?; c/a ratio determines slip systems and twinning: some

hex metals are very brittle (Mg) and some are rather ductile (Ti)

Crystal dislocations: Relationship between lattice and defects



atoms per cell

coordination number

atomic packaging
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Crystal structure: BCC
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Glide plane: BCC



atoms per cell

coordination number

atomic packaging
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Crystal structure: FCC
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Crystal dislocations: FCC structure
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Introduction: dependence of deformation on SFE

γ (fcc) cells → γ (fcc) planar → γ (fcc+kappa) planar → γ (fcc+twins) → ε (hcp) → α’ (bcc/bct)

medium-Mn (5-12%) 

high-Mn (15-30%) 

high-Mn+Al

lower SFE

Critical stress for ε-martensite growth:

Critical stress for 

twin growth:

ΔGγ→ε << 0 

ΔGγ→ε >> 0 
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Outline: High Mn steels

1. High-Mn TWIP steels

2. Weight reduced high Mn – high Al steels – as quenched

3. Weight reduced high Mn – high Al steels – kappa carbides



Fe-22Mn-0.6C TWIP steel (wt.%)

ε = 5% 

ε = 10% 

ε = 5% ε = 30% 

ε = 30% 

Gutierrez-Urrutia et al. (2012) Acta Mater. 60, p. 5791, Gutierrez-Urrutia et al. (2011) Acta Mater. 59, p. 6449

14



15

Outline: High Mn steels

1. High-Mn TWIP steels

2. Weight reduced high Mn – high Al steels – as quenched

3. Weight reduced high Mn – high Al steels – kappa carbides



Fe-30%Mn-8%Al-1.2%C – 10-18% Weight reduction

16

Raabe  et al (2015) Steel Research International, 86 (10), pp. 1127 
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Rapid alloy prototyping:  Fe-Mn-Al-C steels: not heat treated 

Fe-30.5Mn-2.1Al-1.2C (wt. %) 

Gutierrez-Urrutia, et al . Acta Materialia 60  (2012) 5791
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Dynamic microband refinement

Springer Acta Materialia, v. 60, p. 4950 18

Fe-30Mn-8Al-1.2C (wt%), as-quenched, no kappa precipitates
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Fe-30.4Mn-8Al-1.2C (wt%), as-quenched, no kappa precipitates

Welsch et al. (2016) Acta Materialia, 116, pp. 188

Electron Channeling

Contrast Imaging ECCI
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Outline: High Mn steels

1. High-Mn TWIP steels

2. Weight reduced high Mn – high Al steels – as quenched

3. Weight reduced high Mn – high Al steels – kappa carbides



Fe-30Mn-8Al-1.2C, different annealing times at 600°C

21

After 30 min at 600°C saturation in yield 

strength increase
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Fe-30%Mn-7.7%Al-1.3%C (wt.%) – 10-18% weight reduction

Yao, M.J. et al. Acta Materialia 106 (2016) 229



600°C-24h-aged: kappa particle morphology
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[001] DF-TEM

Courtesy: E. Welsch



Analyzing microstructure features using DDD 
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Dislocation pinning due to cross-slip into 

different conjugate glide plane

Dislocation wrapping 

around -carbides

Formation of slip bands 

from individual 

dislocation sources 
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8Al-600°C-24h-aged, e=15%, correlative TEM-APT

≥ 9.0 at.% CC

DF-TEM
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Crystal structure: FCC



27

Crystal structure: Hexagonal

Seperate class by Dr. Sandlöbes
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Crystal structure: Hexagonal



vectors and planes

for hexagonal 

materials

29

Miller Indices
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hexagonal alloy systems: crystal structure and plasticity: examples

Mg - RE
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S. Sandlöbes et al. / Acta Materialia 70 (2014) 92–104

Crystal dislocations: Hex structure – example of Mg
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Plastic deformation of a single crystal by dislocation slip

Gottstein, Physical Foundations of Materials Science; Springer
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Plastic deformation of a single crystal by dislocation slip
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Gottstein, Physical Foundations of Materials Science; Springer
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Boundary condition: determines lab frame constraints

Constraints lead to specific crystal rotations

Non-symmetric dislocation shear leads to rotation

Symmetric-shear can lead to shape change without rotation

Change in local constraints leads to heterogeneity

Roters et al. Acta Mater.58 (2010)
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u=u(x,y,z)

u(1)(x,y,z)

1

1

1 2

2

2

u(2)(x,y,z)

(x(1),y,z) (x(2),y,z)

u(1)(x,y,z)=u(2)(x,y,z)

Kinematics: displacement vector in continuum space

Roters et al. Acta Mater.58 (2010)
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u=u(x,y,z)

u(1)(x,y,z)

1

1

1 2

2

2

u(2)(x,y,z)

(x(1),y,z) (x(2),y,z)

u(1)(x,y,z)≠u(2)(x,y,z)

Kinematics: displacement vector in continuum space

Roters et al. Acta Mater.58 (2010)
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Kinematics, displacement, displacement gradient: general

Roters et al. Acta Mater.58 (2010)

Strain tensor: symmetrical part of displacement gradient tensor

Distorsions come from gradients in the displacement fields
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Displacement gradient

Roters et al. Acta Mater.58 (2010)
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Displacement gradient tensor
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Displacement gradient tensor: the Cauchy strain
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Displacement gradient tensor: the Cauchy strain
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Displacement gradient tensor: the rotation
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Displacement gradient tensor
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Displacement gradient tensor: strain components
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Displacement gradient tensor: special cases

Rigid Body Displacements

Rigid Body Rotations

Stretching

Shear (with Rotation)

Pure Shear
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Displacement and strain field: infinite straight screw dislocation
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Strain and stress field: infinite straight screw dislocation
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Summary: infinite straight screw dislocation
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Summary: infinite straight edge dislocation
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Summary: infinite straight edge dislocation
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true strain

stress

Dislocations and strain hardening
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  22

21

21 tbF





 

Peach-Koehler Force

Dynamics: forces among dislocations
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Forces among edge dislocations
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Forces among screw dislocations
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Stable configurations for dislocation ensembles

T TT T

T TT T

T TT T

T TT T

T TT T

T
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T
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Homework: calculate forces among dislocations

Calculate the mutual forces for the following dislocation configurations:

2 parallel edge dislocations (same glide plane)

parallel edge and screw dislocations (same glide plane)

2 parallel screw dislocations (same glide plane)

2 parallel edge dislocations (above each other)

2 anti-parallel edge dislocations (same glide plane)

Write program:

store:  stress fields of 2D infinite screw and edge dislocations (along z axis)

enter: position (x,y) and Burgers vector b of second dislocation (place first

dislocation in origing)
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Overview

Discrete Dislocation Dynamics

Statistical Dislocation Dynamics
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Basics of Discrete Dislocation Dynamics: DDD

Discrete Dislocation Dynamics



2D – view parallel to dislocation line

Types of Discrete Dislocation Dynamics in 2D and 3D: DDD

Discrete Dislocation Dynamics in 2D



2D – view parallel to dislocation line

Types of Discrete Dislocation Dynamics in 2D and 3D: DDD

Discrete Dislocation Dynamics in 2D

Some questions:

Difference between edge and screw dislocations?

How to do multiplication?

Dislocation bow-out?

Annihilation?

Climbing?



2D – view into the glide plane

Types of Discrete Dislocation Dynamics in 2D and 3D: DDD
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Discrete Dislocation Dynamics in 2D



2D – view into the glide plane

Types of Discrete Dislocation Dynamics in 2D and 3D: DDD

64

Discrete Dislocation Dynamics in 2D

Some questions:

Difference between edge and screw dislocations?

Cross-slip?

Climb?

Cutting?

Jog-drag?



2D – view into the glide plane

Types of Discrete Dislocation Dynamics in 2D and 3D: DDD
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Discrete Dislocation Dynamics in 2D

Some questions:

Difference between edge and screw dislocations?

Cross-slip?

Climb?

Cutting?

Jog-drag?



2D – view into the glide plane

Types of Discrete Dislocation Dynamics in 2D and 3D: DDD
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Discrete Dislocation Dynamics in 2D

Some questions:

Difference between edge and screw dislocations?

Cross-slip?

Climb?

Cutting?

Jog-drag?
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Dislocation Interactions

Dislocation-Dislocation Interactions

Straight dislocation can intersect to leave Jogs and 

Kinks in the dislocation line

Extra segments in a dislocation line cost energy and 

require work done by the external force



68

Edge-Edge Intersection Perpendicular Burgers vector
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Edge-Edge Intersection Parallel Burgers vector
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?How to proceed?

Stress field of (edge) dislocation

Get coordinates

Use Peach Koehler

Move it

Basics of Discrete Dislocation Dynamics in 2D
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  aa

a

a tbF



others allForce

Basics of Discrete Dislocation Dynamics in 2D

Force on dislocation ‘a‘

by all others
‘a‘

ab


at

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Force

Motion xBxBxmF












Basics of Discrete Dislocation Dynamics in 2D

inertia

acceleration

velocity

friction coefficient (drag)

  aa

a

a tbF



others all
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Equilibrium of forces

Basics of Discrete Dislocation Dynamics in 2D

  aa

a

a tbF



alle

0

0








ai

i

FxBF

F






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F F F F F F F F F Fdisloc self force extern therm viscous obstacle Peierls osmotic image inertia          0

Fdisloc : elastic – other dislocations

Fself force : elastic – self

Fextern : external

Ftherm : Stochastic Langevin

Fviscous : viscous drag

F  0

Fobstacle : obstacle

FPeierls : Peierls

Fosmotic: chemical forces

Fimage : surface forces

Fpoint defect : point defects

Basics of Discrete Dislocation Dynamics: 2D and 3D

Equilibrium of forces
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  aa

a

a tbF



all

0 externala FxBF





1

2
3

Example of Discrete Dislocation Dynamics in 2D
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T
?

Example of Discrete Dislocation Dynamics in 2D
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?

1) Calculate stress field of machine and of

all other dislocations at position of T 

2) Use Peach-Koehler equation to get force

on dislocation

3) Integrate with very small time step

(explicit) viscous eq. of motion

T

Example of Discrete Dislocation Dynamics in 2D
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Dislocation-surface Interactions
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Examples in 2D and 3D

Examples
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Example of Discrete Dislocation Dynamics in 2D
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Example of Discrete Dislocation Dynamics in 2D
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Example of Discrete Dislocation Dynamics in 3D: superalloys



84

Example of Discrete Dislocation Dynamics in 3D: superalloys
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Example of Discrete Dislocation Dynamics in 3D: superalloys
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Example of Discrete Dislocation Dynamics in 3D: superalloys



WHY Statistical Dislocation

Dynamics ?

87

Statistical Dislocation Dynamics



• kinetic equation of state

• structure evolution

• coupling to continuum kinematics

88

Statistical Dislocation Dynamics
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Statistical Dislocation Dynamics
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Statistical Dislocation Dynamics



• kinetic equation of state
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Statistical Dislocation Dynamics



• kinetic equation of state

kinetics: collective dislocation behaviour
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• coupling to imposed shape change

• structure evolution

92

Statistical Dislocation Dynamics
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Overview

Roters et al. Acta Materi.58 (2010) 94
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• Yield criterion for single slip:

ij bi nj = crss

• In 2D this becomes (111:

11 b1 n1+ 22 b2 n2 = crss

Single crystal plasticity: constructing the yield surface

0 11

22

crss/b1n1

crss/b2n2

elastic
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Single crystal plasticity: constructing the yield surface

What is the straining direction?

The strain increment is given by:

de = Ss d(s)b(s)n(s)

2D case:

de1 = d b1n1; de2 = d b2n2

vector perpendicular to the line for yield

0 11

22

crss/b1n1

crss/b2n2

elastic

Straining direction
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straining direction in stress space

normality rule for crystallographic slip

Any given stress state can in a crystal in large-strain elasto-plasticity act only 

in the form of shear (except hydrostatic effects)

0 1

2

crss/b1n1

crss/b2n2

elastic

elastic-plastic

de = d (b1n1 , b2n2)

Single crystal plasticity: constructing the yield surface
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Plasticity based on dislocation motion

bcc 48 slip systems

orientation {001}<100>

12 x {110}<111>

12 x {112}<111>

24 x {123}<111>
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krit11 /
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Active slip system:

𝜏𝛼 = 𝜏crit

𝜏𝛼 ≈ 𝑻e ∙ 𝑺0
𝛼

with    𝑺0
𝛼 = 𝒎0

𝛼 ⊗𝒏0
𝛼
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Cube texture component: 

(001)[100]

Single crystal plasticity: constructing the yield surface
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Macroscopic – empiricial yield criteria

(σ1 – σ3) = Y

( σ1 > σ2 > σ3 )

Yield criterion: determine the critical stress required to cause permanent deformation

Many different macroscopic yield criteria

σij stress acting on a solid

σ1,  σ2,   σ3 principal values of stress tensor

Y yield stress of the material in uniaxial tension
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Macroscopic yield criteria

(σ1 – σ3) = Y

( σ1 > σ2 > σ3 )

Yield criterion: determine the critical stress required to cause permanent deformation

Many different macroscopic yield criteria

σij stress acting on a solid

σ1,  σ2,   σ3 principal values of stress tensor

Y yield stress of the material in uniaxial tension
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Overview

Roters et al. Acta Mater. 58 (2010) 103
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Iso-stress and iso-strain: general approach
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Iso-stress and iso-strain: Elastic approach: composite stiffness



Iso-stress and iso-strain

Roters et al. Acta Mater. 58 (2010) 106
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Sachs Model (previous lecture on single crystal):

• All grains with aggregate or polycrystal experience the same 

state of stress;

• Equilibrium condition across the grain boundaries satisfied;

• Compatibility conditions between the grains violated, thus, 

finite strains will lead to gaps and overlaps between grains;

• Generally most successful for single crystal deformation with 

stress boundary conditions on each grain. 

Taylor Model (this lecture):

• All single-crystal grains within the aggregate  experience the 

same state of deformation (strain);

• Equilibrium condition across the grain boundaries violated, 

because the vertex stress states required to activate multiple 

slip in each grain vary from grain to grain;

• Compatibility conditions between the grains satisfied;

• Generally most successful for polycrystals with strain 

boundary conditions on each grain. 

Iso-stress and iso-strain for polycrystals



Polycrystal model

Roters et al. Acta Mater. 58 (2010) 108



The Taylor Model
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The Taylor Model

110
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External Stress   External Strain

Small arrows

indicate variable 

stress state in 

each grain

Small arrows

indicate identical 

stress state in 

each grain

Multiple slip (with 5 

or more systems) in 

each grain satisfies 

the externally 

imposed strain, D
Each grain 

deforms according 

to which single 

slip system is 

active
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c
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a
s
in

g
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a
in

The Taylor Model – comparison to Sachs model
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The Taylor Model – comparison to Sachs model



Crystal rotations under heterogeneous constraints

Grains in polycrystals do NOT experience the

same boundary conditions.

Differentiate between GLOBAL bounday conditions (tool, process) and the

LOCAL (micromechanical) boundary conditions. The latter are influenced

by grain-to-grain interactions and local inhomogeneity.

Raabe et al. Acta Mat. 49  (2001) 113



Overview

Roters et al. Acta Materi.58 (2010) 114



3% 8%

15%
Sachtleber, Zhao, Raabe: Mater. Sc. Engin. A 336 (2002) 81

Homogeneity and boundary conditions at grain scale

Raabe et al. Acta Mater. 49  (2001) 3433

115



Crystal Mechanics FEM, grain scale mechanics (2D)

Experiment 

(DIC, EBSD)

v Mises strain

Simulation 

(CP-FEM)

v Mises strain

Sachtleber, Zhao, Raabe: Mater. Sc. Engin. A 336 (2002) 81 116



1mm

8mm

5mm 5mm

FE mesh

exp., grain orientation, side A exp., grain orientation, side B 

equivalent strain

equivalent strain

Zhao, Rameshwaran, Radovitzky, Cuitino, Roters, Raabe : Intern. J. Plast. 24 (2008)

Crystal plasticity FEM, grain scale mechanics (3D Al)

117



too many

grains

D. Raabe: Advanced Materials 14 No. 9 (2002) p. 639

Crystal plasticity FEM for large scale forming predictions

118



Numerical Laboratory: From CPFEM to yield surface (engineering)

Kraska, Doig, Tikhomirov, Raabe, Roters, Comp. Mater. Sc.  46 (2009) 383 119

Multiscale crystal plasticity FEM for large scale forming



Representative Volume Element

Tension 0° (RD)

Tension 90° (TD) Tension biaxial

Tension 45°

RVE

120



0 15 30 45 60 75 90

0,95

0,96

0,97

0,98

0,99

1,00

1,01

1,02

1,03

1,04

1,05

Simulation

Experiment

 

 

re
la

ti
v
e
 e

a
r 

h
ig

h
t 

[1
]

angle to rolling direction [°]

Texture component crystal plasticity FEM for large scale forming

D. Raabe and F. Roters: Intern. J. Plast. 20 (2004) 339 121



Simulation result: Taylor model

Color map: Equivalent total strain
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Simulation result: RGC scheme
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Roters et al. Acta Mater.58 (2010)
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Mechanical properties: ... for which structural component ?

Component-specific property mix

Front crash  Energy absorption Side crash  Strength



TWIP (X30Mn29) DP 800
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Strain rate 800/s: compare TWIP steel to DP800

Awareness of impact situation
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126DAMASK.mpie.de

Düsseldorf Advanced MAterial Simulation Kit, DAMASK

> 15 years of development

> 50 man years of expertise

> 50.000 lines of code

Pre- and post-processing

Blends with MSC.Marc and Abaqus

Standalone (FFT) spectral solver

Freeware, GPL 3

Crystal plasticity & phase field:

Mechanics, damage, phase transformation, diffusion

http://DAMASK.mpie.de

Many user groups


