

Micromechanics of Materials

Dislocations, crystalline anisotropy and plasticity in hexagonal metals

Institut für Metallkunde und Metallphysik

Dr. Stefanie Sandlöbes

sandloebes@imm.rwth-aachen.de

- Crystal structure and Miller-Bravais indices
- Dislocations in hexagonal metals
 - Special case: kink bands
- Twinning in hexagonal metals
- Stacking faults in hexagonal metals
- Texture components in hexagonal metals

- Crystal structure and Miller-Bravais indices
- Dislocations in hexagonal metals
 - Special case: kink bands
- Twinning in hexagonal metals
- Stacking faults in hexagonal metals
- Texture components in hexagonal metals

- Crystal structure and Miller-Bravais indices
- Dislocations in hexagonal metals
 - Special case: kink bands
- Twinning in hexagonal metals
- Stacking faults in hexagonal metals
- Texture components in hexagonal metals

Reminder: hexagonal crystal structure and Miller-Bravais indices

Reminder: hexagonal crystal structure and Miller-Bravais indices

ABAB stacking sequence

Axes:

 $a_1 = a_2 = a_3 \neq c$

Angles:

 $a-c = 90^{\circ}$ $a_1-a_2 = a_2-a_3 = a_1-a_3 = 120^{\circ}$

Planes (Miller-Bravais indices): (*hkil*) with h + k + i = 0 a_3 is redundant: $a_3 = -(a_1 + a_2)$

Reminder: hexagonal crystal structure and Miller-Bravais indices

ABAB stacking sequence

Axes: $a_1 = a_2 = a_3 \neq c$ Angles:

 $a-c = 90^{\circ}$ $a_1-a_2 = a_2-a_3 = a_1-a_3 = 120^{\circ}$

Planes (Miller-Bravais indices): (*hkil*) with h + k + i = 0 a_3 is redundant: $a_3 = -(a_1 + a_2)$

Directions (Miller-Bravais indices): [uvtw] with u + v + t = 0 $u = \frac{1}{3}(2u - v)$

- ACE: basal plane
- ABB'A': prismatic plane

- AB: $\langle a \rangle$ direction AF': $\langle c + a \rangle$ direction
- ABO': first order pyramidal plane $[10\overline{1}1]$
- ACD'F': second order pyramidal plane $[1\overline{1}\overline{2}2]$
- Max-Planck-Institut für Eisenforschung GmbH

Metal	c/a
Be	1.568
Y	1,572
Os	1.579
Hf	1.581
Ru	1.583
Ti	1.588
Sc	1.592
Zr	1.593
TI	1.599
Re	1.615
Со	1.623
Mg	1.623
Zn	1.856
Cd	1.886
Max-Pla	anck-Institut forschung GmbH

Relevance of hexagonal metals:

- ➤ Ti: light-weight; high strength, corrosion resistant
- Mg: light-weight; high specific strength
- Co: high-temperature material; ferromagnetic
- Zn: galvanization; decoration parts, corrosion resistant
- Zr: low neutron absorption
- Be: light-weight; superior specific strength; corrosion resistant
- RE / Y: superior magnetic, optic, electrochemical properties; unique alloying effects

Metal	c/a	HEX ≠ hcp	
Be	1.568		
Υ	1,572		
Os	1.579		
Hf	1.581		
Ru	1.583	NOT: closed packed	
Ti	1.588	crystal structure	
Sc	1.592	Classification as structural	
Zr	1.593	materials class "hcp" not	
TI	1.599	adequat	AA
Re	1.615	Plastically anisotrop	
Со	1.623		
Mg	1.623	8 - 1622	
Zn	1.856	$\sqrt{\frac{3}{3}} = 1.033$	
Cd	1.886		
Max-Pla	anck-Institut forschung GmbH		

Quiz

- > Why use of Miller-Bravais for hexagonal structure?
- Give the indices and show
 - Basal plane
 - Prismatic plane
 - > 1st order pyramidal plane
 - <a> direction
 - <c+a> direction

- Crystal structure and Miller-Bravais indices
- Dislocations in hexagonal metals
 - Special case: kink bands
- Twinning in hexagonal metals
- Stacking faults in hexagonal metals
- Texture components in hexagonal metals
- Anisotropy of precipitation strengthening
- Phase transformations; dual- / multiphase systems
- Shear bands in hexagonal metals

ACE: basal plane ABB'A': prismatic plane ABO': first order pyramidal plane ACD'F': second order pyramidal plane AB: <a> direction AF': <c + a> direction

Cross-slip of <a> dislocations on prismatic plane

ACE: basal plane ABB'A': prismatic plane ABO': first order pyramidal plane ACD'F': second order pyramidal plane AB: <a> direction AF': <c + a> direction

Cross-slip of <a> dislocations on prismatic plane

Peierls mechanisms of cross-slip

Cross-slip of <a> dislocations on pyramidal plane

ACE: basal plane ABB'A': prismatic plane ABO': first order pyramidal plane ACD'F': second order pyramidal plane AB: <a> direction AF': <c + a> direction

17 CHEN

ACE: basal plane ABB'A': prismatic plane ABO': first order pyramidal plane ACD'F': second order pyramidal plane AB: <a> direction AF': <c + a> direction Max-Planck-Institut

für Eisenforschung GmbH

Slip	Burgers	Slip	Slip	Dislo.	No. of slip systems		
system type	vector type	direction	plane	Energy	Total	Independent	
basal	ā	< 1120 >	(0002)	a ²	3	2	
prismatic	ā	< 1120 >	$\{10\bar{1}0\}$	a ²	3	2	
pyramidal <a>	ā	< 1120 >	$\{10\bar{1}1\}$	a ²	6	4	
pyramidal <c+a></c+a>	$\vec{c} + \vec{a}$	< 1123 >	$\{10\bar{1}1\}$	2.63 a ²	6	5	
pyramidal <c+a></c+a>	$\vec{c} + \vec{a}$	< 1123 >	$\{11\overline{2}2\}$	2.63 a ²	6	5	
twinning						0.5 (polar)	

Taylor: at least 5 independent slip systems for plastic poly-crystalline deformation

Metal	c/a	Primary glide plane(s)	Secondary glide plane(s)
Be	1.568	basal <a>	prismatic <a>; pyramidal <a>
Y	1,572	prismatic <a>	basal <a>
Hf	1.581	prismatic <a>	basal <a>; pyramidal <a>
Ti	1.588	prismatic <a>	basal <a>; pyramidal <a>
Sc	1.592	basal <a>	
Zr	1.593	prismatic <a>	basal <a>; pyramidal <a>
TI	1.598	basal <a>; prismatic <a>	
Re	1.615	basal <a>; prismatic <a>	
Со	1.623	basal <a>	
Mg	1.623	basal <a>	prismatic <a>; pyramidal <c+a></c+a>
Zn	1.856	basal <a>	prismatic <a>; pyramidal <a> pyramidal <c+a>; kinking</c+a>
Cd	1.886	basal <a>	prismatic <a>; pyramidal <a> pyramidal <c+a>; kinking</c+a>

Element	c/a	System d/b w/b		activ	activated	
					bei RT	bei HT
Cd	1.886	Basal	0.94	0.83	XX	х
		Prismatisch	0.87	0.58		х
		Pyramidal 1.	0.79	0.64	Х	
		Pyramidal 2.	0.21	0.17	х	Х
Zn	1.856	Basal	0.93	0.67	xx	х
		Prismatisch	0.87	0.52		Х
		Pyramidal 1.	0.79	0.49	Х	
		Pyramidal 2.	0.21	0.18	х	
Mg	1.623	Basal	0.81	0.61	xx	х
		Prismatisch	0.87	0.62	Х	х
		Pyramidal 1.	0.76	0.56	Х	х
		Pyramidal 2.	0.22	0.17		
Со	1.623	Basal	0.81	0.67	х	х
		Prismatisch	0.87	0.67		
		Pyramidal 1.	0.76	0.60		
		Pyramidal 2.	0.22	0.14		

Element	c/a	System d/b w/b		w/b	activ	ated
					bei RT	bei HT
Zr	1.593	Basal	0.80	0.67	х	
		Prismatisch	0.87	0.65	ХХ	х
		Pyramidal 1.	0.76	0.58		х
		Pyramidal 2.	0.23	0.16		х
Ті	1.587	Basal	0.80	0.57	Х	х
		Prismatisch	0.87	0.68	ХХ	х
		Pyramidal 1.	0.76	0.58	х	х
		Pyramidal 2.	0.23	0.17		
Ве	1.568	Basal	0.78	0.38	XX	х
		Prismatisch	0.87	0.47	Х	х
		Pyramidal 1.	0.76	0.40	Х	х
		Pyramidal 2.	0.23	0.12		

Metal	c/a	d/b	w/b	Primary glide plane(s)	Secondary glide plane(s)
Be	1.568	0.78 (B) 0.87 (Pr)	0.38 (B) 0.47 (Pr)	basal <a>	prismatic <a>; pyramidal <a>
Ti	1.588	0.80 (B) 0.87 (Pr)	0.57 (B) 0.68 (Pr)	prismatic <a>	basal <a>; pyramidal <a>
Zr	1.593	0.80 (B) 0.87 (Pr)	0.67 (B) 0.65 (Pr)	prismatic <a>	basal <a>; pyramidal <a>
Со	1.623	0.81 (B)	0.67 (B)	basal <a>	
Mg	1.623	0.81 (B) 0.87 (Pr)	0.61 (B) 0.62 (Pr)	basal <a>	prismatic <a>; pyramidal <c+a></c+a>
Zn	1.856	0.93 (B)	0.67 (B)	basal <a>	prismatic <a>; pyramidal <a> pyramidal <c+a>; kinking</c+a>
Cd	1.886	0.94 (B)	0.83 (B)	basal <a>	prismatic <a>; pyramidal <a> pyramidal <c+a>; kinking</c+a>

Metal	c/a	d/b	w/b	Primary glide plane(s)	Secondary glide plane(s)
Be	1.568	0.78 (B) 0.87 (Pr)	0.38 (B) 0.47 (Pr)	basal <a>	prismatic <a>; pyramidal <a>
Ti	1.588	0.80 (B) 0.87 (Pr)	0.57 (B) 0.68 (Pr)	prismatic <a>	basal <a>; pyramidal <a>
Zr	1.593	0.80 (B) 0.87 (Pr)	0.67 (B) 0.65 (Pr)	prismatic <a>	basal <a>; pyramidal <a>
Со	1.623	0.81 (B)	0.67 (B)	basal <a>	
Mg	1.623	0.81 (B) 0.87 (Pr)	0.61 (B) 0.62 (Pr)	basal <a>	prismatic <a>; pyramidal <c+a></c+a>
Zn	1.856	0.93 (B)	0.67 (B)	basal <a>	prismatic <a>; pyramidal <a> pyramidal <c+a>; kinking</c+a>
Cd	1.886	0.94 (B)	0.83 (B)	basal <a>	prismatic <a>; pyramidal <a> pyramidal <c+a>; kinking</c+a>

> 5 times higher ductility

- Well-balanced work hardening
- Max-Planck-Institut für Eisenforschung GmbH

Comparable strength

- High amount of basal <a> dislocations
- Hardly any dislocations with a <c> component
- Basal <a> dislocations lying on defined slip bands

TEM images of <c+a> dislocations in Mg 3 wt-% Y (3.5 % CR)

- > Red arrows: cross-slip events
- > Blue arrows: dislocation dissociation on pyramidal planes

Thermal activation – conventional behaviour

Max-Planck-Institut

für Eisenforschung GmbH

Barnett et al. (2002)

Dislocations in hexagonal metals – Kink bands

Kink-band formation

- Kink band: a deformation band in which the orientation is changed due to synchronized slipping on several parallel slip planes
- Kinking in hex having c/a ratio > 1.732 (-> twinning is unlikely).

Max-Planck-Institut für Eisenforschung GmbH

Dislocations in hexagonal metals – Kink bands

Quiz

- How many slip system types in hexagonal metals?
- Which slip system types?
- How many independent systems?
- Which are the most common slip systems?
- Why are metals with basal <a> slip brittle?

- Crystal structure and Miller-Bravais indices
- Dislocations in hexagonal metals
 - Special case: kink bands
- Twinning in hexagonal metals
- Stacking faults in hexagonal metals
- Texture components in hexagonal metals

Twinning in hex metals:

- Prevalent deformation mechanism
- \geq 2 twinning systems, in many metals more than 1 system active
- 6 variants per twinning system
- Twins can consume full grains
 - > no dynamic grain refinement
 - deformation inside twins, secondary twinning
- Considered as 0.5 independent deformation systems (polar nature)
- Carry only small shear
- c/a: "atomic shuffling"

- K₁ twinning habit plane (invariant plane of twinning shear)
- K₂ conjugate twinning plane
- η_1 twinning direction
- $\eta_2\$ conjugate twinning direction
- R rotation axis
- q number of twin habit planes
- d interplanar distance

"Easy" schematics twinning fcc

perfect fcc lattice in <110> projection

C-layer is missing: intrinsic SF created

C-layer is missing: intrinsic SF created

"Easy" schematics twinning fcc

"Easy" schematics twinning fcc

η₁

 η_2 R

a

d

First order prismatic plane

Tensile strain on c-axis

 \rightarrow tension twin

Compressive strain on c-axis

\rightarrow compression twin

Parallel lines are basal plane traces

Max-Planck-Institut

für Eisenforschung GmbH

41

Barnett (2008)

42

EN

für Eisenforschung GmbH

ACE: basal plane ABB'A': prismatic plane ABO': first order pyramidal plane ACD'F': second order pyramidal plane Max-Planck-Institut für Eisenforschung GmbH

(*) $b_{tw\eta i}$: Bugers vector of zonal twin dislocation η_i - "simple" geometrical description of complex atomic shuffling to form twin

44

EN

ACE: basal plane ABB'A': prismatic plane ABO': first order pyramidal plane ACD'F': second order pyramidal plane Max-Planck-Institut

Max-Planck-Institut für Eisenforschung GmbH

ACE: basal plane ABB'A': prismatic plane ABO': first order pyramidal plane ACD'F': second order pyramidal plane Max-Planck-Institut

Max-Planck-Institut für Eisenforschung GmbH

ACE: basal plane ABB'A': prismatic plane ABO': first order pyramidal plane ACD'F': second order pyramidal plane Max-Planck-Institut

Max-Planck-Institut für Eisenforschung GmbH

ACE: basal plane ABB'A': prismatic plane ABO': first order pyramidal plane ACD'F': second order pyramidal plane

Max-Planck-Institut für Eisenforschung GmbH

RWTHAACHEN

ACE: basal plane ABB'A': prismatic plane ABO': first order pyramidal plane ACD'F': second order pyramidal plane Max-Planck-Institut

Max-Planck-Institut für Eisenforschung GmbH

Twin nucleation

- "Normal" twinning mechanism
 Simultaneous glide of multiple twinning dislocations
- "Zonal" twinning mechanism
 Simultaneous glide of a zonal dislocation ("super-dislocation" of partial dislocations) and multiple twinning dislocations

Twin nucleation

- "Normal" twinning mechanism
 Simultaneous glide of multiple twinning dislocations
- "Zonal" twinning mechanism
 Simultaneous glide of a zonal dislocation ("super-dislocation" of partial dislocations) and multiple twinning dislocations

$A_{a}B_{b}C_{c}D_{d}E_{e}F_{f}G_{g}H_{h}I_{i}J_{j}K_{k}L_{l}M_{m}N_{n}O_{0}A_{a}$	ideal hcp
$A_{a}B_{b}C_{c}D_{d}E_{e}F_{f}G_{g}H_{g}G_{g}H_{h}I_{i}J_{j}K_{k}L_{l}M_{m}N_{n}$	2-layer twin
$A_{a}B_{b}C_{c}D_{d}E_{e}F_{f}G_{g}H_{g}G_{f}F_{f}G_{g}H_{h}I_{i} J_{j}K_{k}L_{l}$	4-layer twin
A _a B _b C _c D _d E _e F _f G _g H _g G _f F _e E _e F _f G _g H _h I _i J _j	6-layer twin
C _c D _d E _e F _f G _g H _h I _h H _g G _f F _e E _e F _f G _g H _h I _i J _j	8-layer twin
"Normal" twinning	

Twin nucleation

- "Normal" twinning mechanism
 Simultaneous glide of multiple twinning dislocations
- "Zonal" twinning mechanism
 Simultaneous glide of a zonal dislocation ("super-dislocation" of partial dislocations) and multiple twinning dislocations

A _a B _b C _c D _d E _e F _f G _g H _h I _i J _j K _k L ₁ M _m N _n O _o A _a	ideal hcp
$A_{a}B_{b}C_{c}D_{d}E_{e}F_{c}G_{g}H_{g}G_{g}H_{h}I_{i}J_{j}K_{k}L_{l}M_{m}N_{n}$	2-layer twin
$A_{a}B_{b}C_{c}D_{d}E_{e}F_{f}G_{g}H_{g}G_{f}F_{f}G_{g}H_{h}I_{i}J_{j}K_{k}L_{l}$	4-layer twin
A _a B _b C _c D _d E _e F _f G _g H _g G _f F _e E _e F _f G _g H _h I _i J _j	6-layer twin
$C_{c}D_{d}E_{e}F_{f}G_{g}H_{h}I_{h}H_{g}G_{f}F_{e}E_{e}F_{f}G_{g}H_{h}I_{i}J_{j}$	8-layer twin
"Normal" twinning	

"Normal" twinning

Twin nucleation

- "Normal" twinning mechanism
 Simultaneous glide of multiple twinning dislocations
- "Zonal" twinning mechanism
 Simultaneous glide of a zonal dislocation ("super-dislocation" of partial dislocations) and multiple twinning dislocations

$A_{a}B_{b}C_{c}D_{d}E_{e}F_{f}G_{g}H_{h}I_{i}J_{j}K_{k}L_{l}M_{m}N_{n}O_{0}A_{a}$	ideal hcp
$A_{a}B_{b}C_{c}D_{d}E_{e}F_{f}G_{g}H_{g}G_{g}H_{h}I_{i}J_{j}K_{k}L_{l}M_{m}N_{n}$	2-layer twin
A _a B _b C _c D _d E _e F _f G _g H _g G _f F _f G _g H _h I _i J _j K _k L ₁	4-layer twin
A _a B _b C _c D _d E _e F _f G _g H _g G _f F _e E _e F _f G _g H _h I _i J _j	6-layer twin
C _c D _d E _e F _f G _g H _h I _h H _g G _f F _e E _e F _f G _g H _h I _i J _j	8-layer twin
"Normal" twinning	

Twin nucleation

- "Normal" twinning mechanism
 Simultaneous glide of multiple twinning dislocations
- "Zonal" twinning mechanism
 Simultaneous glide of a zonal dislocation ("super-dislocation" of partial dislocations) and multiple twinning dislocations

A_aB_bC_cD_dE_eF_fG_gH_hI_iJ_jK_kL₁M_mN_nO₀A_a ideal hcp P1 A_aB_bC_cD_dE_eF_fG_gH_gG_gH_hI_iJ_jK_kL₁M_mN_n 2-layer twin P2 A_aB_bC_cD_dE_eF_fG_gH_gG_fF_fG_g H_hI_i J_jK_kL₁ 4-layer twin P3 A_aB_bC_cD_dE_eF_fG_gH_gG_fF_eE_eF_fG_gH_h I_i J_j 6-layer twin P4 C_cD_d E_eF_fG_gH_hI_hH_gG_fF_eE_eF_fG_gH_h I_i J_j 8-layer twin "Normal" twinning

Twin nucleation

- "Normal" twinning mechanism
 Simultaneous glide of multiple twinning dislocations
- "Zonal" twinning mechanism
 Simultaneous glide of a zonal dislocation ("super-dislocation" of partial dislocations) and multiple twinning dislocations

A_aB_bC_cD_dE_eF_fG_gH_hI_iJ_jK_kL₁M_mN_nO_oA_a ideal hcp P1 A_aB_bC_cD_dE_eF_fG_gH_gG_gH_hI_iJ_jK_kL₁M_mN_n 2-layer twin P2 A_aB_bC_cD_dE_eF_fG_gH_gG_fF_fG_gH_hI_iJ_jK_kL₁ 4-layer twin P3 A_aB_bC_cD_dE_eF_fG_gH_gG_fF_eE_eF_fG_gH_h I_iJ_j 6-layer twin P4 C_cD_dE_eF_fG_gH_hI_hH_gG_fF_eE_eF_fG_gH_h I_iJ_j 8-layer twin "Normal" twinning

Twin nucleation

Max-Planck-Institut für Eisenforschung GmbH

- "Normal" twinning mechanism
 Simultaneous glide of multiple twinning dislocations
- "Zonal" twinning mechanism
 Simultaneous glide of a zonal dislocation ("super-dislocation" of partial dislocations) and multiple twinning dislocations

$A_{a}B_{b}C_{c}D_{d}E_{e}F_{f}G_{g}H_{h}I_{i}J_{j}K_{k}L_{l}M_{m}N_{n}O_{0}A_{a}$	ideal hcp	AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoAa	ideal hcp
P1		P1	
$A_{a}B_{b}C_{c}D_{d}E_{e}F_{f}G_{g}H_{g}G_{g}H_{h}I_{i}J_{j}K_{k}L_{l}M_{m}N_{n}$	2-layer twin	A _a B _b C _c D _d E _e F _f G _g H _g H _h I _i J _j K _k L ₁ M _m N _n O ₀	stacking fault
P2		P2	
A _a B _b C _c D _d E _e F _f G _g H _g G _f F _f G _g H _h I _i J _j K _k L _l	4-layer twin	A _a B _b C _c D _d E _e F _f G _g H _g G _f G _g H _h I _i J _j K _k L _l M _m	3-layer twin
P3		P3	
A _a B _b C _c D _d E _e F _f G _g H _g G _f F _e F _e F _f G _g H _h I _i J _j	6-layer twin	A _a B _b C _c D _d E _e F _f G _g H _g G _f F <u>e</u> F _f G _g H _h I _i J _j K _k	5-layer twin
P4		P4	
C _c D _d E _e F _f G _g H _h I _h H _g G _f F _e E _e F _f G _g H _h I _i J _j	8-layer twin	CcDdEeFfGgHhlhHgGfFeFfGgHhliJjKk	7-layer twin
"Normal" twinning		"Zonal" twinning	
5		5	57

Tomé et al. (2009)

Twin nucleation

Max-Planck-Institut für Eisenforschung GmbH

- "Normal" twinning mechanism
 Simultaneous glide of multiple twinning dislocations
- "Zonal" twinning mechanism
 Simultaneous glide of a zonal dislocation ("super-dislocation" of partial dislocations) and multiple twinning dislocations

Tomé et al. (2009)

Twin nucleation

Max-Planck-Institut für Eisenforschung GmbH

- "Normal" twinning mechanism
 Simultaneous glide of multiple twinning dislocations
- "Zonal" twinning mechanism
 Simultaneous glide of a zonal dislocation ("super-dislocation" of partial dislocations) and multiple twinning dislocations

$$\begin{array}{rcl} A_{a}B_{b}C_{c}D_{d}E_{e}F_{f}G_{g}H_{h}I_{i}J_{j}K_{k}L_{1}M_{m}N_{n}O_{0}A_{a} & \text{ideal hcp} & A_{a}B_{b}C_{c}D_{d}E_{e}F_{f}G_{g}H_{h}I_{i}J_{j}K_{k}L_{1}M_{m}N_{n}O_{0}A_{a} & \text{ideal hcp} \\ & P_{1} &$$

Twin nucleation

für Eisenforschung GmbH

- "Normal" twinning mechanism
 Simultaneous glide of multiple twinning dislocations
- "Zonal" twinning mechanism
 Simultaneous glide of a zonal dislocation ("super-dislocation" of partial dislocations) and multiple twinning dislocations

$$A_{a}B_{b}C_{c}D_{d}E_{e}F_{f}G_{g}H_{h}I_{i}J_{j}K_{k}L_{l}M_{m}N_{n}O_{0}A_{a} \quad ideal hcp \quad A_{a}B_{b}C_{c}D_{d}E_{e}F_{f}G_{g}H_{h}I_{i}J_{j}K_{k}L_{l}M_{m}N_{n}O_{0}A_{a} \quad ideal hcp \quad P_{1}$$

$$A_{a}B_{b}C_{c}D_{d}E_{e}F_{f}G_{g}H_{g}G_{g}H_{h}I_{i}J_{j}K_{k}L_{l}M_{m}N_{n} \quad 2-layer twin \quad A_{a}B_{b}C_{c}D_{d}E_{e}F_{f}G_{g}H_{g}H_{h}I_{i}J_{j}K_{k}L_{l}M_{m}N_{n}O_{0} \quad stacking fault \quad P_{2}$$

$$A_{a}B_{b}C_{c}D_{d}E_{e}F_{f}G_{g}H_{g}G_{f}F_{f}G_{g}H_{h}I_{i}J_{j}K_{k}L_{l} \quad 4-layer twin \quad A_{a}B_{b}C_{c}D_{d}E_{e}F_{f}G_{g}H_{g}G_{f}G_{f}G_{g}H_{h}I_{i}J_{j}K_{k}L_{l}M_{m} \quad 3-layer twin \quad A_{a}B_{b}C_{c}D_{d}E_{e}F_{f}G_{g}H_{g}G_{f}F_{e}F_{e}F_{e}F_{f}G_{g}H_{h}I_{i}J_{j} \quad 6-layer twin \quad A_{a}B_{b}C_{c}D_{d}E_{e}F_{f}G_{g}H_{g}G_{f}F_{e}F_{f}G_{g}H_{h}I_{i}J_{j}K_{k} \quad 5-layer twin \quad A_{a}B_{b}C_{c}D_{d}E_{e}F_{f}G_{g}H_{g}G_{f}F_{e}F_{f}G_{g}H_{h}I_{i}J_{j}K_{k} \quad 5-layer twin \quad C_{c}D_{d}E_{e}F_{f}G_{g}H_{h}I_{i}H_{g}G_{f}F_{e}F_{G}F_{g}H_{h}I_{i}J_{j}K_{k} \quad 7-layer twin \quad C_{c}D_{d}E_{e}F_{f}G_{g}H_{h}I_{i}H_{g}G_{f}F_{e}F_{f}G_{g}H_{h}I_{i}J_{j}K_{k} \quad 7-layer twin \quad C_{c}D_{d}E_{e}F_{f}G_{g}H_{h}I_{i}H_{g}G_{f}F_{e}F_{G}G_{g}H_{h}I_{i}J_{j}K_{k} \quad 7-layer twin \quad C_{c}D_{d}E_{e}F_{c}G_{g}H_{h}I_{i}H_{g}G_{f}F_{e}F_{G}G_{g}H_{h}I_{i}J_{j}K_{k} \quad 7-layer twin \quad C_{c}D_{d}E_{e}F_{f}G_{g}H_{h}I_{i}H_{g}G_{f}F_{e}F_{G}G_{g}H_{h}I_{i}J_{j}K_{k} \quad 7-layer twin \quad C_{c}D_{d}E_{e}F_{f}G_{g}H_{h}I_{i}F_{i}F_{k} \quad C_{c}D_{d}E_{e$$

Tomé et al. (2009)

Twin nucleation

- "Normal" twinning mechanism" Simultaneous glide of multiple twinning dislocations
- "Zonal" twinning mechanism Simultaneous glide of a zonal dislocation ("super-dislocation" of partial dislocations) and multiple twinning dislocations

🖉 🖤 für Eisenforschung GmbH

Yoo (1981)

Metal	c/a	Active twinning system(s)	
Be	1.568	$\{10\overline{1}2\}\langle\overline{1}011\rangle$	
Ti	1.588	$\{10\overline{1}2\}\langle\overline{1}011\rangle$ $\{10\overline{1}1\}\langle10\overline{1}\overline{2}\rangle$ $\{10\overline{2}1\}\langle\overline{1}\overline{1}26\rangle$ $\{11\overline{2}2\}\langle11\overline{2}\overline{3}\rangle$	(11Ž1) [II26]
Zr	1.593	$\{10\overline{1}2\}\langle\overline{1}011\rangle$ $\{10\overline{2}1\}\langle\overline{1}\overline{1}26\rangle$ $\{11\overline{2}2\}\langle11\overline{2}\overline{3}\rangle$	(1122) [1123]
Re	1.615	$\{10\overline{2}1\}\langle\overline{1}\overline{1}26\rangle$	1 10m 10m 32
Со	1.623	$10\overline{1}2$ $\overline{1}011$ $10\overline{2}1$ $\overline{1}\overline{1}26$	(1013) [20
Mg	1.623	$\{10\overline{1}2\}\langle\overline{1}011\rangle$ $\{10\overline{1}1\}\langle10\overline{1}\overline{2}\rangle$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Zn	1.856	$\{10\overline{1}2\}\langle\overline{1}011\rangle$	
Cd	1.886	$\{10\overline{1}2\}\langle\overline{1}011\rangle$	1.6 1.7 1.8 1.9
6			AXIAL RATIO c/a

🖤 🖤 für Eisenforschung GmbH

Yoo (1981)

2110

0001

Tensile twin (86°@11-20) Compression twin (56°@11-20) Secondary twin (38°@11-20) HAGB (>15°)

VINI VINI INTI I

Quiz

- How many twinning systems in hexagonal metals?
- > Which twinning systems do you remember?
- What is a tension twin?
- What is a compression twin?
- What is a secondary twin?
- What is a twinning dislocation?
- > Why using the concept of twinning dislocations in hexagonal metals?

Topics

- Crystal structure and Miller-Bravais indices
- Dislocations in hexagonal metals
 - Special case: kink bands
- Twinning in hexagonal metals
- Stacking faults in hexagonal metals
- Texture components in hexagonal metals

Basal stacking faults in hex metals:

- I₁- stacking sequence ...ABABCBCBC...
- I₂ stacking sequence ...ABCACAC...
- E stacking sequence ... ABABCABAB...

Non-basal stacking faults in hex metals:

- ~ 80 possible dislocation dissociation reactions
- Relevant for twin nucleation
- Confirmation only by MD yet

Stacking fault energies determine:

- Energy needed for the dissociation of a perfect dislocation
 - Dislocation core structure
 - Dislocation mobility
 - Cross-slip probability

Basal stacking faults in hex metals:

I₁- stacking sequence …ABABCBCBC… Shockley-type basal <a> partial and Frank-type $\frac{1}{2}$ <c+a> partial → sessile, proposed as Frank-Read source <c+a>

Basal stacking faults in hex metals:

I₁- stacking sequence …ABABCBCBC… Shockley-type basal <a> partial and Frank-type $\frac{1}{2}$ <c+a> partial → sessile, proposed as Frank-Read source <c+a>

I₂ - stacking sequence ...ABCACAC... 2 Shockley-type basal partials : $\frac{1}{3}[\overline{1}2\overline{1}0] \rightarrow \frac{1}{3}[01\overline{1}0] + \frac{1}{3}[\overline{1}100]$ "equivalent" to ISF in fcc proposed as measure for cross-slip probability

Basal stacking faults in hex metals:

```
I<sub>1</sub>- stacking sequence …ABABCBCBC...
Shockley-type basal <a> partial and
Frank-type \frac{1}{2}<c+a> partial
→ sessile, proposed as Frank-Read source <c+a>
```

I₂ - stacking sequence ...ABABCACAC... 2 Shockley-type basal partials : $\frac{1}{3}[\overline{1}2\overline{1}0] \rightarrow \frac{1}{3}[01\overline{1}0] + \frac{1}{3}[\overline{1}100]$ "equivalent" to ISF in fcc proposed as measure for cross-slip probability

E - stacking sequence ... ABABCABAB... energetically unfavorable

(I₂-type) GSFEs for hexagonal metals

SFE:

Dissociation and formation of SFI2 on basal plane Cross-slip on prismatic planes

USFE:

Nucleation of <a> dislocations

Metal	c/a	d/b	w/b	Primary glide plane(s)	Secondary glide plane(s)
Be	1.568	0.78 (B) 0.87 (Pr)	0.38 (B) 0.47 (Pr)	basal <a>	prismatic <a>; pyramidal <a>
Ti	1.588	0.80 (B) 0.87 (Pr)	0.57 (B) 0.68 (Pr)	prismatic <a>	basal <a>; pyramidal <a>
Zr	1.593	0.80 (B) 0.87 (Pr)	0.67 (B) 0.65 (Pr)	prismatic <a>	basal <a>; pyramidal <a>
Со	1.623	0.81 (B)	0.67 (B)	basal <a>	
Mg	1.623	0.81 (B) 0.87 (Pr)	0.61 (B) 0.62 (Pr)	basal <a>	prismatic <a>; pyramidal <c+a></c+a>
Zn	1.856	0.93 (B)	0.67 (B)	basal <a>	prismatic <a>; pyramidal <a> pyramidal <c+a>; kinking</c+a>
Cd	1.886	0.94 (B)	0.83 (B)	basal <a>	prismatic <a>; pyramidal <a> pyramidal <c+a>; kinking</c+a>

(I₂-type) GSFEs for hexagonal metals

SFE:

Dissociation and formation of SFI₂ on basal plane Cross-slip on prismatic planes

(I₂-type) GSFEs for hexagonal metals

SFE:

Dissociation and formation of SFI₂ on basal plane Cross-slip on prismatic planes

Mg: basal <a> -edge dislocation

B=[1100]

uu.

Mg: basal <a> -edge dislocation

Mg: pyramidal <c+a> edge dislocation

Yasi et al. (2009)

Metal	c/a	d/b	w/b	Primary glide plane(s)	Secondary glide plane(s)
Be	1.568	0.78 (B) 0.87 (Pr)	0.38 (B) 0.47 (Pr)	basal <a>	prismatic <a>; pyramidal <a>
Ti	1.588	0.80 (B) 0.87 (Pr)	0.57 (B) 0.68 (Pr)	prismatic <a>	basal <a>; pyramidal <a>
Zr	1.593	0.80 (B) 0.87 (Pr)	0.67 (B) 0.65 (Pr)	prismatic <a>	basal <a>; pyramidal <a>
Со	1.623	0.81 (B)	0.67 (B)	basal <a>	
Mg	1.623	0.81 (B) 0.87 (Pr)	0.61 (B) 0.62 (Pr)	basal <a>	prismatic <a>; pyramidal <c+a></c+a>
Zn	1.856	0.93 (B)	0.67 (B)	basal <a>	prismatic <a>; pyramidal <a> pyramidal <c+a>; kinking</c+a>
Cd	1.886	0.94 (B)	0.83 (B)	basal <a>	prismatic <a>; pyramidal <a> pyramidal <c+a>; kinking</c+a>

(I₂-type) GSFEs for hexagonal metals

SFE:

Dissociation and formation of SFI₂ on basal plane

Cross-slip on prismatic planes

Prismatic plane:

- Much higher SFE
- Unstable dislocation core
- Immobilization ("locking")
- Stress: cross-slip of segments on basal plane

Basal plane:

- Lower SFE
- Spreading of core
- Stable, glissile SF

unstable stable **Basal plane Prismatic plane** Cross-slip Cross-slip stable unstable UL3=Lo Regnier, Dupouy (1970) =ULo B 84

(I1-type) GSFEs for hexagonal metals

SF:

Nucleation of <c+a> dislocations?

> 5 times higher ductility

- Well-balanced work hardening
- Max-Planck-Institut für Eisenforschung GmbH

Comparable strength

TEM images of dislocations in pure Mg

- High amount of basal <a> dislocations
- Hardly any dislocations with a <c> component
- Basal <a> dislocations lying on defined slip bands

TEM images of <c+a> dislocations in Mg 3 wt-% Y (3.5 % CR)

- > Red arrows: cross-slip events
- Blue arrows: dislocation dissociation on pyramidal planes

... but mechanisms?

Mg3Y

- Why high activity of compression twins and <c+a> slip?
 - Shear bands t mechanic, for ductility, but for failure
 - Not related to pricles i.g. precipitation hardening)
 - No purification effective
 - Not caused by gran inement
 - c/a ratio not de sive
 - Changed Participation can not explain high twin activity

Changes in the SFE(s) !

I₁- stacking sequence …ABABCBCBC… → 20-40 mJm⁻² from DFT in pure Mg

SFE:
$$\gamma = \frac{F_{\text{SF}} - F_0}{A_{2D}}$$
 $F = -\sum_n \sum_i J_n S_i S_{i+n}$

I₁- stacking sequence ...ABABCBCBC... → 20-40 mJm⁻² from DFT in pure Mg

SFE:
$$\gamma = \frac{F_{\text{SF}} - F_0}{A_{2D}}$$
 $F = -\sum_n \sum_i J_n S_i S_{i+n}$

SFE:
$$\gamma = \frac{F_{\text{SF}} - F_0}{A_{2D}}$$
 $F = -\sum_n \sum_i J_n S_i S_{i+n}$

I₁- stacking sequence ...ABABCBCBC... → 20-40 mJm⁻² from DFT in pure Mg

I₁ SFE in Mg-3wt.-%-Y: 0.5-1.5 mJ/m⁻² (after 1.5% cold deformation)

I₁ SFE in Mg-1wt.-%-Y: 2.5-3.5 mJ/m⁻² (after 1.5% cold deformation)

- > Which stacking faults in hexagonal metals do you remember?
- How do the stacking fault energy(s) influence the deformation behavior of hexagonal metals?

Topics

- Crystal structure and Miller-Bravais indices
- Dislocations in hexagonal metals
 - Special case: kink bands
- Twinning in hexagonal metals
- Stacking faults in hexagonal metals
- Texture components in hexagonal metals

Deformation texture at fracture begin

- Strong basal type texture
- Matrix grains (0001)||ND
- Basal slip and tensile twinning

- > Weaker (0.5) basal texture intensity
- r-type texture ((0001) 15° tow. RD)
- > non-basal deformation mechanisms 106

Questions?

Ask now

or:

sandloebes@imm.rwth-aachen.de raabe@mpie.de

