International Journal of Plasticity 99 (2017) 19—42

R
4

Contents lists available at ScienceDirect e TG daeice

International Journal of Plasticity

i
journal homepage: www.elsevier.com/locate/ijplas &4

Constitutive modeling of strain induced grain boundary @CmssMark
migration via coupling crystal plasticity and phase-field
methods

M. Jafari ¢, M. Jamshidian ", S. Ziaei-Rad ?, D. Raabe °, F. Roters "

2 Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
b Max-Planck-Institut fiir Eisenforschung, Max-Planck-Strafe 1, 40237 Diisseldorf, Germany

ARTICLE INFO ABSTRACT

ArtiCk history: We have developed a thermodynamically—consistent finite-deformation-based constitu-
Received 14 June 2017 tive theory to describe strain induced grain boundary migration due to the heterogeneity
Received in revised form 13 August 2017 of stored deformation energy in a plastically deformed polycrystalline cubic metal.

Accepted 25 August 2017

Available online 1 September 2017 Considering a representative volume element, a mesoscale continuum theory is developed

based on the coupling between dislocation density-based crystal plasticity and phase field
methods. Using the Taylor model-based homogenization method, a multiscale coupled
finite-element and phase-field staggered time integration procedure is developed and
implemented into the Abaqus/Standard finite element package via a user-defined material

Keywords:
Constitutive modeling
Strain induced boundary migration

Crystal plasticity subroutine. The developed constitutive model is then used to perform numerical simu-

Phase field lations of strain induced grain boundary migration in polycrystalline tantalum. The

Finite elements simulation results are shown to qualitatively and quantitatively agree with experimental
results.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Polycrystalline microstructure of metallic materials can be tailored to specific engineering needs by optimizing the
evolution of microstructure via grain boundary migration (Stojakovic et al., 2008; Ciulik and Taleff, 2009). Therefore, un-
derstanding the mechanisms and driving forces for grain boundary migration is necessary for producing metals with superior
properties via controlling the microstructural characteristics such as crystallographic texture and grain size. During plastic
deformation, most of the plastic work is converted into heat. However, a small portion of the plastic work is stored in
dislocation structures, the so-called stored deformation energy (Anand et al., 2015). Plastic anisotropy of grains in a poly-
crystalline microstructure results in a stored energy difference across grain boundaries which in turn can provide a driving
force sufficient for grain boundary migration in a number of processes (Humphreys and Hatherly, 2004; Raabe, 2014). Strain
induced grain boundary migration (SIBM) is known as the migration of a pre-existing grain boundary segment driven by the
stored energy difference across that grain boundary (Humphreys and Hatherly, 2004; Raabe, 2014). The region swept by a
grain boundary via SIBM acquires a reduced dislocation content (Beck and Sperry, 1950). Therefore, consistent with the
second law of thermodynamics, SIBM generally reduces the total stored deformation energy of a plastically deformed
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microstructure. Static SIBM refers to the case when microstructure evolution occurs subsequent to plastic deformation, while
Dynamic SIBM refers to the case of simultaneous plastic deformation and microstructure evolution.

There is some experimental evidence for the occurrence of SIBM (Raabe et al., 1994). For instance, experiments on
aluminum bicrystals showed that after plastic deformation and during annealing the cube texture {001}(100) intensifies
rapidly in comparison with other texture components because of its low stored deformation energy (Theyssier and Driver,
1999; Kashihara et al., 2011). By introducing an in-situ observation method for microstructural changes during hot defor-
mation, Yogo et al. (2009) were able to detect the onset and measure the rate of SIBM for carbon steel. As an application,
Stojakovic et al. (2008) utilized Static SIBM and developed a processing route to recover the desired fiber texture of iron-
silicon electrical steel. They found that two steps of light rolling and subsequent annealing greatly restores the pre-
existing desired fiber texture having a low stored deformation energy. Recently, Tallef and co-workers (Ciulik and Taleff,
2009; Taleff and Pedrazas, 2013; Noell and Taleff, 2015) utilized dynamic SIBM to produce large single crystals of molybde-
num and tantalum from polycrystalline samples in the solid state.

Regarding the theoretical studies of SIBM, Battaile et al. (2007) developed a simulation method for the interplay between
deformation and microstructure evolution by combining a two-dimensional sharp-interface front tracking model for grain
boundary migration and a finite-element polycrystal plasticity model for deformation. Abrivard et al. (2012a, b) coupled the
phase field and crystal plasticity approaches to simulate SIBM in aluminum bicrystalline and polycrystalline samples. They
concluded that the final microstructure is composed of grains with the lowest stored energy values. The focus of their
simulations was mostly on static SIBM and they only investigated dynamic SIBM for low strain values of about 1%. In a recent
similar study, Zhao et al. (2017) used a combination of phase field and crystal plasticity models to simulate SIBM in bicrys-
talline samples and demonstrated that the heterogeneity of stored deformation energy provides a strong driving force for
SIBM, especially at large strain values. Though providing some valuable insights, none of the aforementioned studies portray
correspondence and similitude with the available experimental data on SIBM. Also, the previous models have mostly
concentrated on the numerical coupling between crystal plasticity and phase field methods rather than on a theoretical
coupling based on a thermodynamically—consistent methodology. In this methodology, grain boundary migration and
plasticity effects are coupled within a consistent thermodynamical framework in which the derivation of the coupled
constitutive theory is directed and restricted by the second law of thermodynamics.

Established upon the diffuse interface description of the grain boundary, the phase field modeling approach has emerged
as a promising computational tool for the modeling of microstructure evolution in a wide range of applications involving
complex morphological evolution (Chen, 2002; Kim et al., 2006; Moelans et al., 2008; Steinbach, 2009). The phase field
method has been widely used for the modeling of recrystallization as a process involving plastic deformation and grain
boundary migration (Takaki et al., 2014; Chen et al,, 2015; Zhao et al., 2016; de Rancourt et al., 2016). Thamburaja and
Jamshidian (2014) reformulated the phase field theory into a thermodynamically—consistent framework and derived
constitutive relations for stressed grain growth in an elastically-deformed polycrystalline RVE. They also implemented their
constitutive theory into the Abaqus/Standard finite element package using a multiscale Taylor model-based homogenization
approach and a sequentially-coupled staggered numerical algorithm. They later demonstrated that such a constitutive model
is able to qualitatively and quantitatively predict the evolution of microstructure and texture of polycrystalline thin films
during post deposition annealing (Jamshidian and Rabczuk, 2014; Jamshidian et al., 2016). However, this model was limited to
elastic deformation i.e. the grain boundary migration driving force arising from the stored energy in dislocation structures
was neglected.

Combined with the phase field approach, the well-documented continuum theory of crystal plasticity (Anand, 2004;
Gurtin et al., 2007; Chen et al., 2015; Shanthraj et al., 2015; Vondrous et al., 2015; Popova et al., 2015; Raabe and Becker,
2000; Roters et al., 2010) is commonly used to model the plastic deformation of a polycrystalline RVE as an aggregate of
differently oriented individual crystals. Recently, Anand et al. (2015) developed a thermodynamically—consistent dislocation
density-based gradient theory of single-crystal plasticity. They derived expressions for the fraction of plastic stress power that
converts to heat and discussed the reduction of the dislocation density during annealing as a dissipative process.

The main objective of the present study is to develop a thermodynamically—consistent constitutive model for SIBM by
utilizing the phase field and crystal plasticity approaches. Particularly, a finite deformation and dislocation density-based
single crystal plasticity theory (Anand et al., 2015; Jafari et al., 2017) is used to augment the previously developed phase
field theory of stressed grain growth (Thamburaja and Jamshidian, 2014) by including the extra driving force arising from the
heterogeneity of the stored deformation energy. Using the multiscale Taylor model-based homogenization method (Taylor,
1938), a sequentially-coupled staggered time integration procedure is developed and implemented into the Abaqus/Stan-
dard finite element package via writing a user material subroutine UMAT. The constitutive model is then used to perform
quantitative simulations of dynamic SIBM in polycrystalline tantalum. This paper ends with a discussion on the simulation
results and the similarities with the experimental data available in the literature.

2. Mesoscale continuum theory

The constitutive model developed in this work is intended for the modeling of microstructure evolution due to grain
boundary migration in a mesoscale domain of a representative volume element (RVE) representing a macroscale material
point as shown in Fig. 1. Particularly, we develop a mesoscale continuum constitutive theory describing strain induced grain
boundary migration mainly driven by the heterogeneity of the stored deformation energy across grain boundary. The
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Fig. 1. (a) A macroscale continuum body under thermo-mechanical loading and a typical macroscale material point within. (b) The mesoscale representative
volume element (RVE) attached to the macroscale material point and a typical mesoscale particle within. The RVE comprises P unique species/single crystal
orientations. (c) Each mesoscale particle is composed of multiple species with the scalar variable £; denoting the volume fraction of species i.

constitutive theory exploits the coupling between the dislocation density-based crystal viscoplasticity approach for
describing the evolution of stored deformation energy and the phase field approach for describing the diffuse interface
motion of grain boundaries. The constitutive theory is developed using the principle laws of thermodynamics and the theory
of microforce balance (Fried and Gurtin, 1994; Gurtin, 2008). As suggested by Thamburaja and Jamshidian (2014), we develop
the present constitutive framework under isothermal conditions and in the absence of heat fluxes/sources. Also, the
mesoscale body/inertial forces and the effect of the body external surfaces on grain boundary motion will be neglected.
Focusing on a mesoscale material particle within the RVE as shown in Fig. 1, all the mesoscale balance equations, constitutive
equations and thermodynamic laws will be formulated in the reference configuration. Furthermore, we shall term each
unique single-crystal orientation as a species where P represents the total number of unique species in the polycrystalline RVE.
In other words, the term species is used for a structural non-conserved field variable of the Ginzburg Landau phase field
formalism.

2.1. Governing variables

Let v, Div and VV denote the gradient, divergence and second gradient operators in the reference configuration, respec-
tively. Considering a typical mesoscale particle in the RVE, the governing variables in the mesoscale constitutive model are:
(a) the Helmholtz free energy per unit reference volume, y; (b) the deformation gradient, F with ] = det F> 0 ; (c) the velocity
gradient, L = FF~! where F is the material time derivative of F (d) the (absolute) temperature, § > 0; (e) the Cauchy stress T,
where T=T" by the balance of angular moment; (f) the volume fraction of single-crystal orientation/species i at the
mesoscale particle, £; where 0 < §; < 1withi=1,2,...,P,and Zle £; = 1. Avalue of §; = 0 means that species i is not present
whereas a value of £; = 1 means that the mesoscale particle fully consists of species i. A mesoscale particle which contains a
mixture of two or more species represents a part of a grain boundary region; (g) the microstress vector h; (measured per unit
area in the reference configuration) which acts in response to changes in the volume fraction of species i wherei = 1,2, ...,P;
and finally (h) the density of dislocations associated with slip system « of species i, p{ witha =1,...,Nandi =1, ..., P, where
N is the number of slip systems.

For convenience, we set the vector m; = V¢; for i = 1,2,...,P, and list the volume fraction of species and its material
gradient as £ = (£1,£5,...,6p) and m = (my,my, ..., mp), respectively. We also represent p’; = (pi],piz, ...,pf\’) as the list con-
taining the dislocation density of all slip systems in species i with i =1,...,P; and finally o’ = (9’1, p2,..., p p) as the list
containing the dislocation density of all slip systems of all species.

2.2. Second law of thermodynamics

Under isothermal condition i.e. § = 0, the local form of the second law of thermodynamics in the reference configuration is
given by (Thamburaja and Jamshidian, 2014)

P
I+ > {Divh) & + hy -} >, ()
i=1

with the mesoscale stress power given by
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Due to the mixture of multiple species, the mesoscale stress power is supposed to be given by the following smooth-
interpolation (Moelans, 2011; Thamburaja and Jamshidian, 2014) over the individual stress power of the species consti-
tuting a mesoscale particle as

s S8 I
SF18E)

with the smooth interpolation scalar function g(§;) = E,»2(3 — 2£;) and the stress power of each speciesifori=1,2,...,P given
by

: (3)

Hf :JiTi : Li with Ji = det Fi’ (4)

where F;, T; and L; represent the deformation gradient tensor, the velocity gradient tensor and the Cauchy stress tensor of
species i, respectively. In the present study, we assume that for all time the deformation gradient of each individual species
constituting a mesoscale particle is the same as the deformation gradient applied to the mesoscale particle; in other words

F=F=L=L;, J=]; and C=(;, (5)

where C=F'F and C; = F F; represent the mesoscale right Cauchy-Green deformation tensor and right Cauchy-Green
deformation tensor for the species i, respectively.

2.3. Microkinematical hypotheses

Following the works of Anand (2004) and Lele and Anand (2009), for each species i the total deformation gradient is
represented by the multiplicative decomposition

F, = FF (6)

i’

where Ff represents the plastic part of F due to the motion of dislocations and F; being the elastic part of F due to the elastic
mechanisms of stretching and rotation of the lattice. We also define the velocity gradient tensor of each species i as

L; = FF (7)
fori=1,2,...,P. Combining Eqs. (6) and (7) leads to the additive decomposition of the velocity gradient of species i as
L =L + FLPF !, (8)

where Lf = Ffl:j?*1 and Lf = FfFf ~1 are the elastic and plastic distortion rates of species i, respectively. The tensor Lf is related
to dislocation motion as the plastic deformation occurs by the motion of dislocations. It is assumed that the dislocation
motion occurs on prescribed slip systems a = 1,2, ..., N in the lattice where each slip system is defined by a slip plane normal
m{, and a slip direction sf, for species i = 1,2,...,P. Denoting microshear-rates on slip system « of species i by v{, with
a=1,2,...,Nandi=1,2,...,P, the plastic distortion rate tensor for species i is expressed by (Anand, 2004)

N
U= iist, ©
a=1

where Sf; = s, ®m{,, is referred to as the Schmid tensor corresponding to slip system « of species i.

We define the elastic strain tensor of each species i as (Anand, 2004)

Ef =1/2 (F{TF —1) (10)

and denote E® = (E{,ES, ..., Ep) as the list containing the elastic strain tensor of all species. Defining the symmetric true lattice
stress (Gurtin, 2000) of species i as

T = JiF T T, (11)

and substituting Eq. (8) in Eq. (4) results in the decomposition of the stress power term of species i into the elastic and plastic
parts as follow
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with Ef being the material time derivative of the elastic strain tensor of species i and C{ = F¢ " F{ the elastic right Cauchy-
Green deformation tensor of species i. Also, substituting Eq. (9) in the last term on the right hand side of Eq. (12) leads to
the plastic stress power of species i as

N
CT; L = 7if, (13)

a=1

where 7¢ = C{T} Sio is the resolved shear stress on slip system « of species i with « =1,2,...,Nand i =1,2,...,P. Finally,
substituting Eq. (13) in Eq. (12) and the result in Eq. (3) and the result of them in Eq. (1) results in

SPagE) (T B +0m) 2 .
S8E) R Y

2.4. Free energy
Using the principle of material frame-indifference (Anand, 2004; Thamburaja and Jamshidian, 2014) and the works of

Fried and Gurtin (1994); Steinbach and Pezzolla (1999); Tonks and Millett (2011); Gurtin et al. (2007) and Anand et al. (2015),
the Helmholtz free energy per unit reference volume, ¥ = y(p’,E¢,6,£, m) is taken to be

ng (51)
The first term on the right-hand side of Eq. (15) represents the composite free energy due to the mixture of multiple species
where y; = w,( pi,Ef, 0) indicates the intrinsic free energy of species i with the smooth interpolation scalar function g(§;) =

51»2(3 —2&) (Bhattachalyya etal., 2011). With integers i = 1, 2, ..., P, the microstructural free energy, y™ is given by (Steinbach
and Pezzolla, 1999; Thamburaja and Jamshidian, 2014)

=(1/2) Z Zw,r e - (1/4>Z 2 c!:(mem,)

i=1 r+i r+i

where w‘ = w (units of energy per unit volume) define the constant potentlal _energy barriers between species i and r in
order to prevent spontaneous conversions between these two species, and e = ef (units of energy per unit length) represent
the constant gradient energy coefficients which control the grain boundary thlckness between species i and r. The de-
pendency of the microstructural free energy on deformation tensor C is included to account for the effect of distortion on
grain boundary migration (Jamshidian et al., 2014).

The intrinsic free energy of each species i, y; is taken to be

Vi=V + ¥ + b,

~ ~0 .
where the thermo-elastic free energy y§ = wf(Ef,H) and the purely thermal free energy 1//? = y; () of each species i are
(Bloomfield et al., 2008; Tonks et al., 2010; Tonks and Millett, 2011)

¥i = (1/2)[Ef — ag, (0 — 0p)1] : & [Ef — gy (0 — O],

and

W = (8 — o) — 01n(6/6)),

respectively. With 6 being the reference temperature, the material constants #;, oy, and ¢y, represent the symmetric fourth-
order elastic moduli tensor for species i, the thermal expansion coefficient and the specific heat respectlvely

Following Anand et al. (2015) and Abrivard et al. (2012a), the defect/plastic free energy \//” gbl (7, 0), for species i is taken
to be
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N
W=aub®d pf, (16)
a=1

where a is a constant approximately equal to 0.5, u is the shear modulus, and b is the magnitude of the Burgers vector.
2.5. Evolution of dislocation density
Following Anand et al. (2015) and Abrivard et al. (2012a), the evolution of the dislocation density associated with slip

system « of species i due to the mechanisms of dislocation generation, dislocation annihilation and SIBM-induced dislocation
reduction is assumed to obey the following phenomenological kinetic relation

i = Kl\/PTX

withe=1,2,..,Nandi=1,2,..., P, pfy being the corresponding initial dislocation density and the step function defined by

2\ )1 if £>0,
step (&){0 if é;SO.

vi

- KZ ,0:1 - pf( Cd él’ Step (gl) Wlth pl {t 0 — p107 (]7)

The first term on the right hand side of Eq. (17) describes dislocation generation due to plastic flow/microshear with K; >
0 being the dislocation-accumulation modulus; while the second term on the right hand side of Eq. (17) represents dislocation
annihilation due to thermal annealing with K, > 0 denoting the recovery rate modulus. There exists experimental evidence
that when a grain boundary moves through a defected material, the dislocation density in the region swept by the boundary
decreases to a large extent (Humphreys and Hatherly, 2004; Battaile et al., 2007; Abrivard et al., 2012a; Raabe, 2014).
Therefore, the third term on the right hand side of Eq. (17) is included to characterize dislocation reduction behind a moving
grain boundary. This term introduces an explicit dependence for the decrease rate of the dislocation density on the evolution
of the phase field variable via the proportionality constant C; > 0. The rate of dislocation reduction increases with increasing
values of Cy. Sufficiently large values of C; resets the dislocation density to its initial state, identified by p ;. Also, in this term
the aim of the switching multiplier step (;) is to localize the SIBM-induced dislocation reduction in the close rear vicinity of
the migrating grain boundary, while leaving the dislocation density ahead of the moving grain boundary intact.

2.6. Dissipation inequality

Under isothermal condition i.e. # = 0, the material time derivative of Eq. (15) is

= 1( st Ef) QYA ZANND v ) R (g
1]/ _ + Z(_ E> i=1 oz;lg 1) - ipl7 (18)
i a8(E) om; ™ "oz, >i8(E)
where the energetic defect forces are defined as
o' Yare _ a‘l/l
Ji(p,,ﬂ)—w. (19)

Substituting Eqs. (15) and (16) in Eq. (19) results in
FE— qub® > 0. (20)

Using Eqgs. (17) and (20), we have

N

TP =Tl ¥ — TRy pf — T pf Cy & step (ff) (21)

where the energetic nonrecoverable generalized stress Tien for slip system « of species i is defined by the constitutive relation

v
= FEK, \/E }1—21' (22)

witha=1,2,...,Nandi=1,2,...,P. Substituting Eq. (21) in Eq. (18) results in
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We then substitute Eq. (23) into inequality (14) to obtain

S S 8601~ ) ) - E

le

% SN 18 T Ky pf S a8E) T Cy i step (&)
Divh; - 2, j
(o ) - EREE AT S

where the dissipative microscopic stress ¢

i=1

{4is for slip system « of species i defined as

T;'deis = T? - 7'iﬂfem (25)
witha=1,2,...,Nandi=1,2,...,P.

2.7. Constitutive equations for stress and micro-traction

Using standard thermodynamics argurréents (Fried and Gurtin, 1994; Anand et al., 2015) in inequality (24) and assuming
that the stresses 7{;;. are independent of E; for each species i, we get the constitutive equations for the elastic stress and the
micro-traction vectors of species i as

szg%; — Ci[EE —ag(0— 01 with i=1,2,...P, (26)
1
and
h; = am, Z ”c m, with i=1,2,....P, (27)

r+i
respectively. Combining Egs. (2) to (5), (11) and (26) gives the mesoscale Cauchy stress as

7 1 a8 B[] — e (0 — 00)IF T

(28)
J Yag(E)
Substituting Eqs. (26) and (27) back into inequality (24), results in the reduced dissipation inequality as
P N :
Yim12a-18ENT] gis Vi i(DWh w) . Y1 e18E) 7§ Ky pf
51
> 1g(E) = o S8
P 18E) 7§ ol Castep (&) &
4 e 4) >0 (29)
Y8
Following our previous assumptions g(§;) > 0,K; > 0, . > 0and C; > 0, we have
P
8(&) 7{ Ky pff 2 0= Z g() 7{ Ky pf >0, (30)
i=1 a=1

which represents the dissipation associated with recovery and
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i
which represents the dissipation due to SIBM-induced dislocation reduction. Use of Egs. (30) and (31), reduces Eq. (29) to

P IMET) L (AN VA
T2 ’ ;(D” h - )5' =0 (32)

To satisfy inequality (32) we assume that the total dissipation due to microshear and the total dissipation arising from grain
boundary migration are non-negative i.e.

DRED DMRT (L
>F8(E)

respectively. Overall, the total dissipation comprises four distinct types; the two former identified by Egs. (30); and (31); are
naturally non negative, while the two latter identified by Eqs. (33); and (33); are used to drive the respective kinetic relations.

P W\ ;
> 0 and Divh;, - = )& > 0, (33)
;( 0t )

2.8. Viscoplastic flow rule

To satisfy inequality (33);, we assume that the dissipation due to microshear on each individual slip system is strictly non-
negative, and that each dissipation is also strongly dissipative i.e.

i i >0 for 4+ 0. (34)

To satisfy (34), we follow the works of Anand (2004) and Gurtin et al. (2007) and use the following form of the viscoplastic
flow rule for microshear on slip system « of species i as
il

¢ _cap(veh T wi Ly _ (N
rhae = SUR(H) (i witn R(#E) = (G01)" (35)
1

where ¥ >0 and m > 0 are a constant reference strain-rate and the constant-rate sensitivity parameter, respectively. The slip
resistance on slip system « of species i, S{ > O witha =1,2,...,Nandi=1,2,...,P is a strength-like internal state variable
which is governed by the following hardening equation' (Franciosi and Zaoui, 1982; Lee et al., 2010)

S =ub > h“ﬁp?, (36)
8

where h* is the hardening matrix with « = 1,2,....Nand 8 = 1,2, ..., N. Finally, substituting Eqgs. (35) and (22) into Eq. (25)
and rearranging results in the microshear rate on slip system « of species i as

1/m

78| — FEKy fp
. . i i .
W=7 ( g ) sign (1), (37)
1

where the sign function defined by

-1 if 7¥<0,
sign(rf') = (1) i.ff Tf;:(())7
1 Ti > V.

2.9. Kinetic relations for species volume fraction

We use inequality (33); to derive kinetic relations for species volume fractions. To impose the physical constraint Zle ¢ =
1= Zf;&i = 0, we follow the work of Thamburaja and Jamshidian (2014) and define

1 As the present study focuses on SIBM in BCC crystalline metals at relatively high temperatures, the part of the resistance due to athermal obstacles to
slip is neglected and only the part due to thermally activated obstacles is considered (Kothari and Anand, 1998; Lim et al., 2015).
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5= Kipglpy with p=12,...P-1 and q=23,..P (38)
p<q

where, the kinetic variables ipq are the transformation/conversion rate between species p and species q. The stoichiometric
coefficients Kj,q are defined as

1 if i=p
Kipg=4¢ -1 if i>p and i=gq
0 otherwise

to ensure the permanent compliance with the constraint Zleéi = 0 during inter-species conversions. Defining the partial
driving force for inter-species conversions by

ff=Divh —2% with i=1,2,...,P, (39)
1
and substituting Eq. (38) into inequality (33); results in
S figlpg = 0 with p=1,2,..P~1 and ¢=2,3,...,P, (40)
p<q

where fgq = fg - fg represents the total driving force for inter-species conversion between species p and q. To satisfy
inequality (40) we assume that the dissipation accompanying the inter-species conversion between each species p and g with
p < q is strictly non-negative, and that each dissipation mechanism is also strongly dissipative i.e.

fgqtpq >0 for {pg#0. (41)

Inequality (41) is satisfied by taking

, f o AN
fm {L;,q frg If|VE[>0, |VE| >0, and |fF,| > i

) (42)
0 otherwise,
where the model parameters Lf,q = Z;q(ﬁ) > 0 represent mobility-like coefficients which control the kinetics of inter-species

conversions, the material parameters fpfgf > 0 denote the thermodynamic resistance to inter-species conversions between
species p and q (Thamburaja and Jamshidian, 2014; Jamshidian et al., 2016). Substituting Eqs. (15) and (27) in Eq. (39) results
in

= SR 43)
with the partial driving force due to grain boundary curvature
Pk ; P,
fim:*Z§C7 D Vg, 72(’)3&"
r+i r+i

the partial driving forces arising from the heterogeneity in thermoelastic free energy

g[S 7 -]
[g@)]’

the partial driving force arising from the heterogeneity in purely thermal free energy

fie

PR [P 18 (v - )]
' (s8]

and finally the partial driving force caused by the heterogeneity in defect/plastic free energy

)

PRL [P g (ve - 7))
’ (s e)]

To summarize, the list of material/model parameters that are to be calibrated/specified are
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3. Computational homogenization

Following the works of Thamburaja and Jamshidian (2014) and Jamshidian et al. (2016), the constitutive theory has been
implemented via a multiscale Taylor model-based computational procedure in which the macroscale deformation gradient F
applied to the material point represented by the RVE is assumed to be uniformly transmitted throughout the RVE i.e. F =F.
Also the mesoscale temperature throughout the RVE is supposed to be equal to the macroscale temperature i.e. § = .

In the multiscale coupled finite element and phase field computational procedure, the mesoscale kinetic relations are
numerically implemented via phase field-like computations while the macroscale equilibrium is calculated by the finite
element method in Abaqus/Standard. To conduct phase field computations, we have discretized the mesoscale domain of the
RVE into Q equal-volumed sub-domains. Using the Taylor model-based iso-strain assumption, the macroscale Cauchy stress T
at a finite element integration point as the macroscopic mechanical response of the material point represented by the RVE is
given by (Thamburaja and Jamshidian, 2014)

T 1 8 k
T_Q;T, k=1,2,....Q, (44)

where T¥ is the Cauchy stress in the k-th subdomain of the RVE. Algorithmic details of the coupled finite element and phase
field computational procedure are given in section 4.

4. Time integration procedure

Following Thamburaja and Jamshidian (2014), a multiscale sequentially-coupled staggered time integration procedure is
developed for the numerical implementation of the constitutive theory. In our computational framework, the macroscopic
stress-strain response of the material point is calculated by the finite-element method whereas the mesoscale microstructure
evolution in the polycrystalline RVE due to SIBM is handled by phase field computations using finite difference method. The
multiscale coupled finite-element and phase-field computational procedure has been implemented into the Abaqus/Standard
finite element program by writing a user material subroutine UMAT. Algorithmic details of the time integration procedure are
as follows.

We use ¢ as the finite-element integration point index where integers ¢ = 1,2, ..., ¢, with ¢,; being the total number of
finite-element integration points. k = 1,2, ..., Qis used as an index to represent the grid points of an RVE with Q denoting the
total number of grid points in the RVE.

Terminology and notation: A quantity at a grid point within an RVE (mesoscopic particle) is termed as a mesoscale quantity
whereas a quantity at a finite-element integration point (macroscopic material point) is termed as a macroscale quantity. A
quantity # at finite-element integration point ¢ is denoted by #¢. A quantity # at the k-th grid point of the RVE attached to
finite-element integration point ¢ is denoted by #¢*. A quantity # at the slip system « of k-th grid point of the RVE attached to
finite-element integration point ¢ is characterized by ##k,

Treatment of microstructural variables: Recall that species i is present at a grid point if 0<£; < 1, and that each species
corresponds to a unique crystal orientation. In our numerical algorithm, we will only keep track of the species which exist at
each grid point (Kim et al., 2006; Thamburaja and Jamshidian, 2014). Let set A, represent the set that contains the species
which satisfy the condition 0 <¢; < 1 at a grid point. Furthermore, every member of set A is unique.

For our discussion in this paragraph, we will restrict our attention to the RVE attached to finite-element integration point
¢: the k-th grid point of the RVE is labeled as G**, and G#* is located at position (x1,X,,x3) in the reference configuration. The
grid points located at positions (X1 + z,x3,X3), (X1 — 2,X2,X3), (X1,X2 + Z,X3), (X1,X2 — Z,X3), (X1,X2,X3 +2) and (X1,X2,X3 — 2)
in the reference configuration are designated as the immediate neighboring grid points of G** with z being the grid spacing.
The grid point index for each immediate neighboring grid point of G** is a member of set Z¢X, Therefore, set Z# has six
members. The j-th member of set Z# is denoted by Zjd”k where integersj = 1,2, ..., 6. The integer label of each grid point, the
coordinates of each grid point in the reference configuration and the integer labels for the immediate neighboring grid points
of each grid point are obtained from an external file.

In the time integration procedure, we define t as the current time with At >0 being an infinitesimal time increment, and
T =t + At. We use the forward Euler method to perform the time integration of the grain growth equations. Using FORTRAN
based statements, the algorithm for the time integration procedure is as follows:

DO ¢ = 1, ¢ (Begin loop over the finite-element integration points)

@ Given the macroscale quantities: {F¢(t) F¢ (1), 0 ,7 02 T¢(t ¢ (t)}
® Update the macroscale quantities (Steps A:C below ),0%(7)}.
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DO k = 1,Q (Begin loop over the grid points of the RVE)

@® Given the mesoscale quantities: {5?’”‘(t),A$*"(t),Z¢~k, p?’k‘“(t), Ff’“(t)}‘ »
@ Update the mesoscale quantities (Steps 1:13 below): {E;””‘(T),Ag"k(mp;‘”"“(f)jf (1)}

Step 1. Set the mesoscale deformation gradients F(t) and F(7):

F(t)=F(t) and F(r)=F(7).

Step 2. Set the mesoscale temperatures 6(t) and 0(r):

o) = 8°(t) and (1) =8 (r).

Step 3. Calculate the mesoscale right Cauchy-Green deformation tensor C(t):

C(t) = FT (0)F(¢).

Step 4. Determine the set A; of species which are present at the grid point and its immediate neighbors:
6 97" y
As = {ujzlAp (6 [uAp (D)

If card A; = 1, no inter-species conversions can occur, and in this case we set E?'k(r) = f?"k(t) for the species ieAZ”"(t), update
Af,”k(‘r) = Ag”k(t). and then proceed to Step 13.

Step 5. Calculate the mesoscale strain Ef(t) for each species i€A;:

-1

Ff (1) = KO (F" (1)
ES(1) = (1/2){ (Fi(0) TRS(6) — 1.

Step 6. Calculate the mesoscale free energies ¥ (t), \pf’(t) and x/xf(t) for each species i€A;:
Vi () = (1/2) {E{ (1) — o (0(0) — O0)1} = & [EF (€) — gy (6(2) — b)Y
VO =aub® >t ),
[43

Y1 (6) = cnl(B(0) — bo) — B(0)In(B(1)/60))

Step 7. Calculate the partial driving force for inter-species conversions, ff(t) for each species i€A;:

F ) =£me) + ) + £ + £,

where

mo=-3 %Cﬂt) e - Y i) with i,

reA: reA:
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Note that Ef’k (t)y=0ifi $A$’k(t). The finite difference method for the calculation of the second gradient of phase field var-
iables has been described in Jamshidian et al. (2014).

Step 8a. Calculate the total driving force for inter-species conversions, fyq(t) for species p, g€A; with p<q:

Foa(6) = FE () = fi (8).

Step 8b. Calculate the transformation rate increment between species, A%y, for species p, €A; with p<q:

o If ‘qu(t)‘ > i€, then

Aépg = Lsq () frq(t)AL
The mobility coefficient, Lf,q( )= Z q(0(0)).

oI ( qu(t)‘ <fif, then

Afyg = 0.

Let set A; denote the set containing the quantities A, #0 for species p, €A; with p <q. If A; = @, we set E;’"k(r) = E;’”k(t) for
each species ieAp¥(t), update A2* (1) = AS*(t); and then proceed to Step 13.

Step 9. Update the species volume fraction, El‘.”’k(r) for each species i€A;:

g¢k :E;’)k Z 1ququ7 p’qug-
p<q

If £ k(r)>1 then set £ "( 7) =1 and if E;fj”‘('r) <0, then set Elf/"'k(r) =0.
Step 10. Update the set Aﬁ‘k(r) of species which satisfy:

0<&k(r) <1, icA;.

Step 11. Ensure that the constraint ) E;‘"k(r) =1 is satisfied by replacing

icAY(r)
. gk .
Ef‘k(r) with i )M 716A$"<(T).
Dreatkpir (7)

Step 12. The dislocation reduction behind a moving grain boundary if (5;’”‘(7) - Ef"k(t)) > 0 for each species i€A;:
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Step 13. Update the mesoscale Cauchy stress T;”"‘(T) for each species i€A;:
Step 13-1. Calculate

. k -1
F;z,trzal _ F(T) (F?w (t)) 7
ce trial <Fe mal) Fe,trial7

Ee trial _ (Ce trial l)

Tlg,mal — 7 [Eieﬁtrzal — ag(0(1) — 01|

Step 13-2. Solve the following three coupled equations for calculating Ay#=y{(1)At for each slip system a:

bk i
T (1) = TP -3 Avic,
o

sPle(r) = ub > hebpl P (),
8

¢ k, a(T) ¢ k,a(t) +Kq /p;ﬁ,kﬂ |A7?| - l(zp;.b‘k‘aAt,

with C¢ = #;[sym(C™ %)) for each species i in A3*(r), where /%) = (sf, ®m¢,). For calculating T¢"'(7), s**(r) and

k.
plte

(1) we use the following three-level iterative procedure.

At the first level, by using a Newton-type iterative algorlthm the first equation is solved for Te¢ (1), while sd’k"‘( 7) and
p"’ k (1) are fixed at their best available estimates. Estimates ofTe ( ) at the end of n and n+1 iterations of Newton-Raphson
are identified by subscripts n and n+1, respectively.
ea:k

k _
zn+1 (1) = Tﬁ; (1) - 7; ! [Gi,nL

Ln

with

TULr

Gzn:TeM ) Tf’mal+ZAyf‘<Tﬁ2k(7) sd)ka(T) p¢ka( ))Cf‘,
03

> — o 0 ok .k .k,
Fin=T +zﬁ:c?®mmgx(ﬁ (7). (7). ol ().

At the second level, while s") ’“"(T) is fixed at its best available estimate, p"’ k“( 7) is updated as follows:

k, k. k
i (1) = pP 5O + Ka ol

pk k k k,
A (TE (1), SR, (1) | - KA,

where the value of p"’ ok, (1) at the end of the mth update at the second level is identified by the subscript m.
At the third level, s¢ ’“"( 7) is updated by:

k. k,
SEORT) /Z hebpld ()

where the value of s?’k‘“(r) at the end of the rth update at the third level is shown by the subscript r.
Step 13-3. Calculate
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K o K
(1) = {1 + ZA7?</;{O}Ff¢ (t).
o

We then normalize Ffw'k(‘r) in order to make sure that the determinant of FfM(T) remains unity. To normalize Ff“(r), the
computed values of its components are divided by the cube root of its computed determinant.

Step 13-4. Calculate

T = detlF(T) o (@) T () F .

Step 13-5. Calculate the mesoscale Cauchy stress T“"k(‘r) and p?k(r) for each grid point:

D G L
ZieA$k<7)g (E?‘k(7)>

T (1) =

Zie/“f;"‘(f) Zag (E;bk(T)> pf”k‘r“ (T)
Siepog @)

o) =

END DO (End loop over the grid points of the RVE)
Step A. Update the macroscale Cauchy stress, using Eq. (44):

=9 1 & ¢,k
T'(r) =g > T"m.
k=1

Step B. Calculate the macroscale dislocation density:

S 1E
P =g > ")
k=1

Step C. To determine the Jacobian matrix for the finite-element code Abaqus/Standard to perform Newton-Raphson iter-
ations, the combination of analytical Jacobian of Balasubramanian (1998) and Thamburaja and Jamshidian (2014) was used.

END DO (End loop over the finite-element integration points).
5. Results and discussion

In this section, the developed constitutive theory and numerical algorithm are used for simulating dynamic SIBM in
tantalum. The evolution of microstructure via SIBM in bicrystalline and polycrystalline tantalum samples under thermo-
mechanical loading is investigated. The bicystalline simulations are conducted to analyze the migration of a flat boundary
as the simplest case study. Simulations of SIBM in a polycrystalline RVE are performed to primarily demonstrate the ability of
the constitutive model for predicting the experimental data available in the literature and secondly to further investigate
SIBM. Before presenting the numerical simulation results, the experiments of Pedrazas et al. (2014) on SIBM in polycrystalline
tantalum are briefly described as follows.

Pedrazas et al. (2014) conducted high-temperature simple-tension experiments on tantalum polycrystalline dog-bone
sheet samples of thickness 760 um under strain-controlled conditions to produce large single crystals by dynamic SIBM.
The solid line in Fig. 2a shows the experimental stress-strain response of the tantalum polycrystal at the fixed true-strain rate
of 5 x 10~4 s~1 and temperature of 2123 K. The average grain size of the polycrystalline sample at the onset of deformation
was 570 um. During the simple tension test, when the tensile strain reaches a critical strain, SIBM occurs at a few specific
grains in the polycrystalline sample. As shown in Fig. 2, initiation of SIBM causes a sudden drop in the flow stress. While the
strain at a constant true strain rate is being applied to the specimen, the growth of these grains by SIBM results in further
reduction of flow stress. The decrease of flow stress during SIBM is attributed to the reduction of the dislocation content
behind the moving grain boundaries and the associated change in texture which in turn cause local softening of the material.
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Fig. 2. (a) The solid line shows the experimental stress-strain response (Pedrazas et al., 2014) of tantalum polycrystal under uniaxial tensile true-strain rate 5 x
104 s~1 at temperature 2123 K and the dashed line represents the numerically simulated stress-strain response fitted to the experimental result until point A i.e.
before the initiation of SIBM. (b) A cubic C3D8R type finite element with a single integration point at its centroid at the macroscale under uniaxial tensile loading
along direction 1 and (c) the tantalum polycrystalline RVE at the mesoscale attached to the integration point of the finite element.

Pedrazas et al. (2014) have reported that SIBM initiates at a critical strain of 0.266 and a corresponding stress value of
10.90 MPa for the case of polycrystalline tantalum. Also, they have emphasized the necessity of plastic straining for SIBM
propagation after initiation.

To perform numerical simulations of SIBM using the multiscale coupled finite element and phase field computational
procedure, the computational model of tantalum polycrystalline RVE is created as follows. The multiscale model is composed
of (i) a single Abaqus three-dimensional continuum finite-element with reduced integration C3D8R which is an 8-node linear
brick element with a single integration point at its centroid at the macroscale as shown in Fig. 2b and (ii) a connected phase
field polycrystalline RVE with diffuse interfaces at the mesoscale as shown in Fig. 2c. Such a single-RVE multiscale model is
sufficient to simulate SIBM in a material point situated within the gage length of the dog-bone tantalum samples under
uniform tensile deformation (Jamshidian et al., 2016). Since the thickness of the experimental polycrystalline tantalum sheet
sample (760 um) and its average grain size (570 um) are comparable, we follow the work of Jamshidian et al. (2016) on
stressed grain growth in polycrystalline thin films and assume a columnar polycrystalline microstructure of the RVE for
simplicity and computational efficiency. Also, the initial random texture of the RVE is created by assigning a random
orientation to each grain by the method described in the work of Anand (2004). The RVE in Fig. 2c is discretized over
400 x 400 x 1 grid points along axes 1, 2 and 3, respectively with uniform grid spacing of z = 14 um and a diffuse interface
thickness of ¥ = 6z. The RVE contains approximately 106 grains with the average grain diameter 570 um as in the experi-
ments. Periodic boundary conditions are applied for the phase field variables on the external boundaries of the RVE.

As in the experiments, a uniaxial tensile deformation in direction 1 is applied to the finite element using a prescribed
displacement boundary condition with a constant strain rate of 5 x 10~4 s~1 at temperature 2123 K as shown in Fig. 2b. To
apply a constant strain rate &, the following velocity boundary condition is applied to the finite element in direction 1:

v=heéexp(ét),
where h is the height of the finite element along direction 1 and t is time. This velocity boundary condition is implemented in
Abaqus by writing a user-amplitude subroutine.
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5.1. Determination of material parameters for single crystal tantalum

The elastic modulus tensor &, for each species k is determined by its crystallographic orientation and the three elastic
constants Cyq, C1 and Cyq of tantalum crystal with cubic symmetry. The values of the elastic constants for tantalum as a
function of temperature are (Simmons and Wang, 1971; Kothari and Anand, 1998)

Ci1 = (268.2 — 0.024 ) GPa
C12 = (159.6 — 0.011 §) GPa (45)
Cas = (87.1 - 0.015 ) GPa

and the shear modulus for cubic crystal is given by

n= \/(C44 x (C11 = C12)/2).

For the modeling of plastic deformation due to crystallographic slip in tantalum with BCC lattice structure, the 24 slip
systems {110} <111> and {112}(111) are considered and any small asymmetry of slip on the {112} planes is neglected
(Kothari and Anand, 1998).

The magnitude of the Burgers vector and the coefficient of thermal expansion taken from literature are b = 2.92 A and
ay = 6.3 x 1076 K1, respectively. The typical values selected for the initial dislocation density, the constant reference strain-
rate and the constant-rate sensitivity parameter are respectively pj = 0.04 wm=2, 4§ = 10.0 s~1 and m = 0.3. Also, a simple
isotropic form is considered for the hardening parameters in Eq. (36) i.e. we set h*# = 1. Following the work of Abrivard et al.
(2012a), we set C; = 5.

Referring back to the evolution law for dislocation densities in Eq. (17), the dislocation-accumulation modulus K; and
recovery modulus K, are calibrated by fitting the simulated stress-strain response of the polycrystalline RVE shown in Fig. 2¢
to the experimental stress-strain response of polycrystalline tantalum before the initiation of SIBM at point A in Fig. 2a. During
simulations, SIBM is prevented by suppressing the evolution of phase field variables. The numerically simulated stress-strain
response fitted to the experiments is shown by the dashed line in Fig. 2a using the fitting parameters K; = 193 um~! and
K, =0.014s 1,

5.2. Determination of model parameters for grain boundary migration
Following the work of Kim et al. (2006), the grain boundary related model parameters {ef,q, wf,q,Lf,q} have definite re-

lationships with the diffuse grain boundary thickness [, grain boundary mobility Mpq and grain boundary energy v;4 be-
tween species p and g as

: 4% ¢ 8 . My
Wpg = £ = e lbg: Lpg =g T (46)
Pq pq

where Mpq = M, exp(—Gpq/Kp0) with K}, being the Boltzmann constant and the material parameters My, >0 and Gpq >0
denoting the reference mobility and activation energy, respectively.

For simplicity, we assume isotropic grain boundary properties (Jamshidian and Rabczuk, 2014; Tonks and Millett, 2011)
and set v;q = vi=constant, M, = M°=constant, Gpq = G=constant which means that grain boundary properties are inde-
pendent of the grain boundary misorientation angle. The diffuse grain boundary thickness is also taken to be the same for all
grain boundaries i.e. If;q = F=constant. These assumptions result in o);iq = wi=constant, ef,q = ¢f=constant, Mpq = M=constant
and Lf,q = [f=constant.

We use the following typical values available in the literature for tantalum grain boundary energy and mobility

Y¥=12]m2, M=272x109m% s,
and use Eqgs. (46) to get

W =0057MJm3, £=8171wm ", [F=40y "'m3s !

Finally, following Thamburaja and Jamshidian (2014) we assume that the thermodynamic resistance to inter-species
conversions is a constant parameter independent of grain boundary misorientation angle i.e. we assume fggf = fC=constant
where f€ is a constant material parameter representing the volumetric resistance (units of energy per unit volume) to grain
boundary migration.

Before conducting numerical simulation for SIBM in polycrystalline tantalum, we use the aforementioned material and
model parameters to perform SIBM simulations for a flat boundary in a tantalum bicystalline specimen.
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5.3. Analysis of SIBM in a tantalum bicrystalline RVE

Experimental studies on SIBM in bicrystals (Theyssier and Driver, 1999; Kashihara et al., 2011) have shown that when a
bicrystalline specimen composed of two differently oriented single crystals separated by a flat boundary is deformed by plane
strain compression or rolling at high temperature, the two grains acquire different stored energy values. In response to this
stored energy difference across the grain boundary, SIBM occurs resulting in the growth of the grain with lower stored energy.

In this section, we use the developed constitutive model and the material parameters determined in sections 5.1 and 5.2 to
simulate SIBM in a bicrystalline RVE. As shown in Fig. 3a, the bicrystal consists of two grains with <001 > and (111) ori-
entations separated by a planar flat boundary. These orientations have been selected as they demonstrate a large hardening
difference under deformation and consequently produce a large stored energy difference across the grain boundary. As the
grain boundary is flat, the curvature driving force is absent in this specific case study. Also, the critical resistance to grain
boundary migration is not considered in this case study i.e. f¢ = 0. The SIBM simulation begins by applying a uniaxial tensile
loading in direction 1 to the finite element representing the bicrystalline RVE with a constant strain rate of 5 x 104 s~ 1 at
temperature 2123 K.

Shown in Fig. 3b is the numerically simulated stress-strain response of the bicrystalline RVE. Also, the evolution of the
macroscale dislocation density in the bicrystal in terms of the applied strain is shown in Fig. 4. The contour plots of the
dislocation density distribution within the tantalum bicrystalline microstructure are plotted in Fig. 5 at different strain values
labeled by points A, B, C and D in Fig. 4. These points are respectively corresponding to the strain values 0.018, 0.108, 0.18 and
0.261. These plots illustrate the evolution of dislocation density within the microstructure during dynamic SIBM.

By the application of tensile loading to the bicrystal at constant strain rate, both the flow stress and the macroscale
dislocation density increase with strain. Under the applied loading conditions, the <100> oriented crystal acquires less
stored deformation energy compared to the <111 > oriented crystal; resulting in a stored energy difference across the grain

<111> <100> <111>

0 0.1 0.2 0.3 0.4 0.5
Strain

(b)

Fig. 3. (a) tantalum bicrystalline RVE used in numerical simulations. (b) Numerically simulated stress-strain response of the bicrystal under uniaxial tensile
loading in direction 1 with a constant strain rate.
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Fig. 4. The evolution of the macroscale dislocation density in the bicrystal in terms of the applied macroscale strain. The points labeled as A, B, C and D are
respectively corresponding to the strain values 0.018, 0.108, 0.18 and 0.261.

boundary separating the two crystals. At point A in Fig. 4 while the total dislocation density has increased to some perceptible
values, the stored energy difference is not enough to cause a sensible movement of grain boundary as shown in the contour
plot A in Fig. 5a. By further straining of the bicrystal, the stored energy difference across the grain boundary rises and
eventually provides sufficient driving force to initiate SIBM as shown in Fig. 5b.

Initiation of SIBM is identified by point B in Fig. 4. By the onset of grain boundary migration by SIBM, the increasing rate of
the flow stress and macroscale dislocation density gradually decrease beyond point B. Continuous straining of the bicrystal
further increases the stored energy difference across the grain boundary, resulting in the acceleration of SIBM between points
B and C in Fig. 4. Due to the reduction of the dislocation density behind the migrating grain boundary by SIBM, the rate of
change of the flow stress and the macroscale dislocation density gradually decreases to become negative at some point
between B and C. In other words, the occurrence of SIBM at the mesoscale, converts the increasing rate of the flow stress and
macroscale dislocation density at point B to a decreasing rate at point C. As shown in the contour plot of the dislocation
density in Fig. 5¢, at point C the boundary has moved over a finite distance and the dislocation density has decreased behind it.
Also, this figure shows that while the dislocation density decreases behind the moving grain boundary, it is untouched in its
front. However, further continuous straining causes the increase of the dislocation density in both rear and front of the
moving grain boundary.

The consequence of the competing decrease of the dislocation density due to SIBM and increase of the dislocation density
due to straining is the reduction of the macroscale dislocation density and flow stress beyond point C in Fig. 4. This reduction
persists by the continuation of SIBM until the expanding < 100> crystal totally consumes the shrinking <111 > crystal and
the whole mesoscale domain becomes a single Crystal with < 100 > orientation at point D in Fig. 4. By the completion of SIBM
at point D, further straining results in the hardening of the single crystalline domain and consequently the increase of
macroscale dislocation density and flow stress beyond point D.

In order to have a closer look at the evolution of the local dislocation density values within the bicrystal during SIBM at the
mesoscale, the profile of dislocation density along the bicrystal in direction 1 is plotted in Fig. 6 at different strain values
identified by points B, C and D in Fig. 4. Fig. 6 clearly shows the sudden decrease of dislocation density behind the moving
grain boundary due to SIBM and also the gradual increase of dislocation density far away from the moving grain boundary due
to continuous straining.

The aforementioned results agree with experimental TEM observations of discontinuous dynamic recrystallization in
polycrystalline copper (Sakai et al., 2014) and also recent SIBM simulation results (Zhao et al., 2017). These previous studies
have shown that SIBM leaves a low—dislocation density region behind the migrating grain boundary and new dislocations are
accumulated far away from the mobile grain boundary.

5.4. Simulation of SIBM in tantalum polycrystalline RVE and comparison with experiments

In this section, the developed constitutive model and the material parameters determined in sections 5.1 and 5.2 are
employed to simulate SIBM in the tantalum polycrystalline RVE shown in Fig. 2c. SIBM simulations in the polycrystal begin by
the application of the previously-described uniaxial tension with a constant strain rate along direction 1. The numerically-
simulated stress-strain response of the tantalum polycrystalline RVE is shown by the solid line in Fig. 7a where the exper-
imental response is also drawn by the dashed line for comparison. In addition, the evolution of the macroscale dislocation
density in the polycrystal as a function of the applied macroscale strain is shown in Fig. 7b. The contour plots of dislocation
density distribution within the tantalum polycrystalline microstructure are displayed in Fig. 8 at different strain values
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Fig. 5. The contour plots of dislocation density in the tantalum bicrystalline microstructure at different strain values labeled by points (a) A, (b) B, (c) Cand (d) D
in Fig. 4.

labeled by points A, B, C, D, E, and F in Fig. 7a. These points are respectively corresponding to the macroscale strain values 0.00,
0.24, 0.26, 0.32, 0.35 and 0.40. Zero strain at point A corresponds to the undeformed state. These plots demonstrate the
evolution of dislocation density within the polycrystalline microstructure during dynamic SIBM. In order to have a statistical
analysis of the evolution of grain sizes during SIBM, the grain size distribution (GSD) histograms for the initial undeformed
microstructure and the final microstructure, respectively, labeled by points A and F in Fig. 7a are plotted in Fig. 9.

During the simulations, at a specific strain level the local value of the stored energy difference at a particular grain
boundary segment within the RVE reaches and overcomes the critical resistance to grain boundary migration, leading to
SIBM. Initiation and propagation of SIBM is characterized by a sudden and continuous drop in the stress-strain response of the
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Fig. 6. The profile of dislocation density in the tantalum bicrystal shown in Fig. 3a along direction 1 at different strain values identified by points B, C and D in
Fig. 4.

polycrystalline RVE as shown in Fig. 7a between points B and C. Our simulations have shown that the specific strain level for
the initiation of SIBM is directly related to the critical resistance to grain boundary migration identified by the material
parameter f¢. Particularly, increasing f¢ postpones the initiation of SIBM to higher strain values. In our simulations, the value
of f¢ has been chosen so that SIBM initiates at the same strain level as in the experiments (Pedrazas et al., 2014). The simulated
stress-strain response in Fig. 7a is obtained using f€ = 0.052 M] m~3. As shown in Fig. 7a, the numerical simulation results
show a satisfactory correspondence with the experimental data after the initiation of SIBM beyond point B.

Analysis of the simulation results presented in Figs. 7—9 suggests the following trends:

Trend 1: A minimum critical macroscopic strain value for the initiation of SIBM is observed. Before reaching this critical
strain, SIBM does not occur as the local values of the stored energy difference across grain boundary segments within the
mesoscale microstructure are below the critical resistance to grain boundary migration. The critical strain for the
mesoscale initiation of SIBM is identified by point B in Fig. 7a and the corresponding contour plot for the distribution of
mesoscale dislocation density is shown in Fig. 8b.

Trend 2: By further increasing the macroscopic strain beyond the critical strain for the initiation of SIBM, at a specific grain
boundary segment the local value of the stored energy difference reaches the critical resistance for grain boundary
migration while the stored energy difference elsewhere is still below the critical resistance. As a result, this specific grain
boundary segment migrates by SIBM. The macroscale manifestation of SIBM is identified by point C in Fig. 7a and the
corresponding contour plot for the distribution of mesoscale dislocation density is shown in Fig. 8c. The stress-strain
response in Fig. 7a demonstrates a sudden drop in the macroscopic flow stress due to the initiation of SIBM. The con-
tour plot in Fig. 8c clearly shows the reduction of the dislocation density behind the migrating grain boundary by SIBM.
Trend 3: Within a finite period of time, SIBM is continued by the same grain boundary segment at which SIBM was
initiated, as shown in Fig. 8d. This is due to the reduction of the dislocation density behind the moving grain boundary and
consequently the intensification of the driving force due to the stored energy difference. The reduction of the dislocation
density in the region swept by the moving grain boundary results in the reduction of the total dislocation density within
the RVE and consequently the reduction of the macroscale flow stress, as shown in point D in Fig. 7a. By the persisting
increase of the applied strain under constant strain rate, the local value of stored energy difference reaches the critical
resistance for grain boundary migration at some other specific grain boundary segments and consequently SIBM initiates
at some other locations within the microstructure, as shown in Fig. 8d.

Trend 4: The so-called abnormal grains grown by SIBM are impeded by the low stored energy grains. Particularly, when a
grain growing by SIBM encounters a relatively low stored energy grain, SIBM stops due to the fall of the driving force below
the critical resistance for grain boundary migration. As shown in Fig. 8e, such impeding grains are observed as island grains
surrounded by the abnormal grains grown by SIBM.

Trend 5: As in the experimental stress-strain curve, the simulated stress response under a constant strain rate shown in
Fig. 7a demonstrates an undulating softening behavior. Via a detailed analysis of the simulation results, it was concluded
that multiple intermittent occurrences and stops of SIBM on a local scale at different locations within the microstructure
result in such an undulating softening behavior of the stress response. A similar reasoning for the experimental irregu-
larities of dynamic SIBM in tantalum has also been proposed by Pedrazas et al. (2014).

Trend 6: The overall rate of SIBM decreases during its propagation due to the increasing number of impeded grain
boundary segments, as shown in Fig. 8f. Therefore, the decreasing rate of the macroscale dislocation density and
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Fig. 7. (a) Numerically simulated stress-strain response of the tantalum polycrystal under uniaxial tensile loading with a constant strain rate and its comparison
against the experimental response (Pedrazas et al., 2014). The points labeled as A, B, C, D, E and F are respectively corresponding to the strain values 0.00, 0.24,
0.26, 0.32, 0.35 and 0.40. (b) The evolution of the macroscale dislocation density in the polycrystal as a function of the applied macroscale strain.

consequently the decreasing rate of the macroscopic flow stress reduces while increasing the applied strain, as shown in
Fig. 7. Eventually, at some point the hardening rate exceeds the softening rate due to SIBM and hence the macroscopic flow
stress stops decreasing. This turning point is identified by point F in Fig. 7a and the corresponding contour plot for the
distribution of the mesoscale dislocation density is shown in Fig. 8f. Further increase of the applied strain under constant
strain rate beyond this turning point smoothly increases the flow stress again as shown in Fig. 7.

Trend 7: The initial undeformed microstructure shown in Fig. 8a which is composed of equiaxed grains has a log-normal
grain size distribution as shown in Fig. 9a. During SIBM, a few grains which are favored by the plastic driving force i.e. the
driving force due to the heterogeneity in defect/plastic free energy, consume other grains and abnormally grow in size.
Such abnormal grains appear as non-equiaxed large grains in the final microstructure shown in Fig. 8f. As illustrated by the
final GSD shown in Fig. 9b, the abnormal grains change the initial log-normal GSD via emerging at larger grain sizes.
Comparing the initial and final GSDs in Fig. 9, the initial log-normal GSD appears almost unchanged in shape but reduced
in height in the final GSD. The height of the GSD reduces due to the consuming of the equiaxed grains by a few abnormal
grains. As identified by arrows in Fig. 9, these abnormal grains appear in the final GSD as low-height single bars at larger
grain sizes far away from the log-normal part.

Finally, it is worth mentioning that recent experimental studies on SIBM (Ciulik and Taleff, 2009; Taleff and Pedrazas, 2013;
Pedrazas et al., 2014) have partially alluded to the trends described above.
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6. Conclusions

In this study, the dislocation density-based crystal plasticity and phase field methods were coupled to develop a ther-
modynamically—consistent finite-deformation-based constitutive theory for describing strain induced grain boundary
migration in a plastically deformed polycrystalline RVE. A mesoscale finite-deformation-based constitutive theory was
developed using the principle laws of thermodynamics and the theory of microforce balance. By taking the Helmholtz free
energy to be a function of dislocation density, the driving forces due to the heterogeneity of the stored deformation energy
were included. A Taylor model-based homogenization approach was employed to develop a multiscale sequentially-coupled
staggered time integration procedure based on the coupling between finite-element and phase field methods. The numerical
algorithm was implemented into the Abaqus/Standard finite element package via writing a user material subroutine UMAT.

The developed constitutive model was then used to perform SIBM simulations in bicrystalline and polycrystalline
tantalum. Our numerical simulations qualitatively and also quantitatively match the experimental results of Pedrazas et al.
(2014) for SIBM in polycrystalline tantalum. Particularly, the following trends were observed in SIBM simulations.

A minimum critical macroscopic strain value for the initiation of SIBM is observed before which SIBM does not occur
because the stored energy difference across the grain boundary has nowhere reached the critical resistance to grain boundary
migration. SIBM is initiated by specific grain boundary segments across which the stored energy difference exceeds the
critical resistance to grain boundary migration. Initiation of SIBM causes a sudden drop in the macroscopic flow stress. Under
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constant macroscopic strain rate, the propagation of SIBM causes further reduction of the macroscopic flow stress due to
decreasing the dislocation content behind the moving grain boundaries. When the SIBM front encounters a grain with
relatively low stored deformation energy, SIBM stops due to the reduction of the driving force below the critical resistance for
grain boundary migration. Such obstructing grains are seen as island grains surrounded by the grains grown by SIBM. The
overall rate of SIBM decreases during its propagation due to the increasing number of impeded grain boundary segments.
Eventually, at some point the hardening rate exceeds the softening rate due to SIBM and hence the macroscopic flow stress
stops decreasing.

As a future work, the present model can be augmented by including a description of external surface effects for the
modeling of microstructure and texture evolution in polycrystalline thin films. Particularly, the augmented constitutive
theory can be developed via supplementing the free energy functional by an additional excess surface free energy term as in
the work of Jamshidian et al. (2016).

References

Abrivard, G., Busso, E., Forest, S., Appolaire, B., 2012a. Phase field modelling of grain boundary motion driven by curvature and stored energy gradients. part
i theory and numerical implementation. Philos. Mag. 92, 3618—3642.

Abrivard, G., Busso, E., Forest, S., Appolaire, B., 2012b. Phase field modelling of grain boundary motion driven by curvature and stored energy gradients. part
ii: application to recrystallisation. Philos. Mag. 92, 3643—3664. http://dx.doi.org/10.1080/14786435.2012.717726.

Anand, L., 2004. Single-crystal elasto-viscoplasticity: application to texture evolution in polycrystalline metals at large strains. Comput. Methods Appl.
Mech. Eng. 193, 5359—5383. Advances in Computational Plasticity.

Anand, L., Gurtin, M.E., Reddy, B.D., 2015. The stored energy of cold work, thermal annealing, and other thermodynamic issues in single crystal plasticity at
small length scales. Int. ]. Plast. 64, 1-25.

Balasubramanian, S., 1998. Doctoral thesis dissertation. Department of Mechanical Engineering, Massachusetts Institute of Technology.

Battaile, C.C., Counts, W.A., Wellman, G.W., Buchheit, T.E., Holm, E.A., 2007. Simulating grain growth in a deformed polycrystal by coupled finite-element
and microstructure evolution modeling. Metall. Mater Trans. A 38, 2513—2522.

Beck, P.A., Sperry, P.R., 1950. Strain induced grain boundary migration in high purity aluminum. J. Appl. Phys. 21, 150—152.


http://refhub.elsevier.com/S0749-6419(17)30338-8/sref1
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref1
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref1
http://dx.doi.org/10.1080/14786435.2012.717726
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref3
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref3
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref3
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref4
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref4
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref4
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref6
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref6
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref6
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref7
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref7

42 M. Jafari et al. / International Journal of Plasticity 99 (2017) 19—42

Bhattacharyya, S., Heo, T., Chang, K., Chen, L., 2011. A phase-field model of stress effect on grain boundary migration. Modell. Simul. Mater Sci. Eng. 19,
035002.

Bloomfield, M.O., Bentz, D.N., Cale, T.S., 2008. Stress-induced grain boundary migration in polycrystalline copper. J. Electron Mater 37, 249—263.

Chen, L., Chen, J., Lebensohn, R,, Ji, Y., Heo, T., Bhattacharyya, S., Chang, K., Mathaudhu, S., Liu, Z., Chen, L.Q., 2015. An integrated fast fourier transform-based
phase-field and crystal plasticity approach to model recrystallization of three dimensional polycrystals. Comput. Methods Appl. Mech. Eng. 285,
829-848.

Chen, L.Q., 2002. Phase-field models for microstructure evolution. Annu. Rev. Mater Sci. 32, 113—140. Cited By (since 1996): 367.

Ciulik, J., Taleff, E.M., 2009. Dynamic abnormal grain growth: a new method to produce single crystals. Scr. Mater 61, 895—898.

Franciosi, P., Zaoui, A., 1982. Multislip in f.c.c. crystals a theoretical approach compared with experimental data. Acta Metall. 30, 1627—1637.

Fried, E., Gurtin, M.E., 1994. Dynamic solid-solid transitions with phase characterized by an order parameter. Phys. D. 72, 287—308.

Gurtin, M.E., 2000. On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids 48, 989—1036.

Gurtin, MLE., 2008. Configurational Forces as Basic Concepts of Continuum Physics, vol. 137. Springer Science & Business Media.

Gurtin, M.E., Anand, L., Lele, S.P., 2007. Gradient single-crystal plasticity with free energy dependent on dislocation densities. J. Mech. Phys. Solids 55,
1853—-1878.

Humphreys, M., Hatherly, ., 2004. Recrystallization and Related Annealing Phenomena, second ed. Elsevier.

Jafari, M., Jamshidian, M., Ziaei-Rad, S., 2017. A finite-deformation dislocation density-based crystal viscoplasticity constitutive model for calculating the
stored deformation energy. Int. ]. Mech. Sci. 128, 486—498.

Jamshidian, M., Rabczuk, T., 2014. Phase field modelling of stressed grain growth: analytical study and the effect of microstructural length scale. J. Comput.
Phys. 261, 23.

Jamshidian, M., Thamburaja, P., Rabczuk, T., 2016. A multiscale coupled finite-element and phase-field framework to modeling stressed grain growth in
polycrystalline thin films. J. Comput. Phys. 327, 779—798.

Jamshidian, M., Zi, G., Rabczuk, T., 2014. Phase field modeling of ideal grain growth in a distorted microstructure. Comput. Mater. Sci. 95, 663—671.

Kashihara, K., Konishi, H., Shibayanagi, T., 2011. Strain-induced grain boundary migrationin112;111;,/100;001;and 123 ;634;/100;0 0 1; aluminum
bicrystals. Mater. Sci. Eng. A 528, 8443—8450.

Kim, S.G., Kim, D.I., Kim, W.T., Park, Y.B., 2006. Computer simulations of two-dimensional and three-dimensional ideal grain growth. Phys. Rev. E Stat.
Nonlinear Soft Matter Phys. 74.

Kothari, M., Anand, L., 1998. Elasto-viscoplastic constitutive equations for polycrystalline metals: application to tantalum. J. Mech. Phys. Solids 46, 51—83.

Lee, M., Lim, H., Adams, B., Hirth, ]., Wagoner, R., 2010. A dislocation density-based single crystal constitutive equation. Int. J. Plast. 26, 925—938.

Lele, S.P., Anand, L., 2009. A large-deformation strain-gradient theory for isotropic viscoplastic materials. Int. ]. Plast. 25, 420—453.

Lim, H., Battaile, C.C., Carroll, ].D., Boyce, B.L., Weinberger, C.R., 2015. A physically based model of temperature and strain rate dependent yield in {BCC}
metals: implementation into crystal plasticity. J. Mech. Phys. Solids 74, 80—96.

Moelans, N., 2011. A quantitative and thermodynamically consistent phase-field interpolation function for multi-phase systems. Acta Mater 59, 1077—1086.

Moelans, N., Blanpain, B., Wollants, P., 2008. Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in
anisotropic systems. Phys. Rev. B 78, 025502.

Noell, J., Taleff, M., 2015. Dynamic abnormal grain growth in refractory metals. The Journal of the Minerals. Metals Mater. Soc. 67, 2642—2645.

Pedrazas, N.A., Buchheit, T.E., Holm, E.A., Taleff, E.M., 2014. Dynamic abnormal grain growth in tantalum. Mater. Sci. Eng. A 610, 76—84.

Popova, E., Staraselski, Y., Brahme, A., Mishra, R., Inal, K., 2015. Coupled crystal plasticity probabilistic cellular automata approach to model dynamic
recrystallization in magnesium alloys. Int. J. Plast. 66, 85—102. Plasticity of Textured Polycrystals In Honor of Prof. Paul Van Houtte.

Raabe, D., 2014. 23-recovery and recrystallization: phenomena, physics, models, simulation. In: Laughlin, D.E., Hono, K. (Eds.), Physical Metallurgy, fifth ed.
Elsevier, Oxford, pp. 2291—2397.

Raabe, D., Becker, R.C., 2000. Coupling of a crystal plasticity finite-element model with a probabilistic cellular automaton for simulating primary static
recrystallization in aluminum. Modell. Simul. Mater Sci. Eng. 8, 445—462.

Raabe, D., Schlenkert, G., Weisshaupt, H., Liicke, K., 1994. Texture and microstructure of rolled and annealed tantalum. Mater. Sci. Technol. 10, 299—305.

de Rancourt, V., Ammar, K., Appolaire, B., Forest, S., 2016. Homogenization of viscoplastic constitutive laws within a phase field approach. J. Mech. Phys.
Solids 88, 291-319.

Roters, F.,, Eisenlohr, P.,, Hantcherli, L., Tjahjanto, D., Bieler, T., Raabe, D., 2010. Overview of constitutive laws, kinematics, homogenization and multiscale
methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater. 58, 1152—1211.

Sakai, T., Belyakov, A., Kaibyshev, R., Miura, H., Jonas, ].J., 2014. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation
conditions. Prog. Mater. Sci. 60, 130—207.

Shanthraj, P, Eisenlohr, P., Diehl, M., Roters, F., 2015. Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials. Int. J.
Plast. 66, 31—45. Plasticity of Textured Polycrystals In Honor of Prof. Paul Van Houtte.

Simmons, G., Wang, H., 1971. Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook. The MIT Press.

Steinbach, 1., 2009. Phase-field models in materials science. Modell. Simul. Mater Sci. Eng. 17.

Steinbach, 1., Pezzolla, E, 1999. A generalized field method for multiphase transformations using interface fields. Phys. D. 134, 385—393.

Stojakovic, D., Doherty, R., Kalidindi, S., Landgraf, Fernando, J.G.v. p, 2008. Thermomechanical processing for recovery of desired {001} fiber texture in
electric motor steels. Metall. Mater. Trans. A 39.

Takaki, T., Yoshimoto, C., Yamanaka, A., Tomita, Y., 2014. Multiscale modeling of hot-working with dynamic recrystallization by coupling microstructure
evolution and macroscopic mechanical behavior. Int. J. Plast. 52, 105—116. In Honor of Hussein Zbib.

Taleff, E.M., Pedrazas, N.A., 2013. A new route for growing large grains in metals. Science 341, 1461—1462. http://science.sciencemag.org/content/341/6153/
1461.full.pdf.

Taylor, G.I., 1938. Plastic strain in metals. ]. Inst. Met. 62, 307—324.

Thamburaja, P., Jamshidian, M., 2014. A multiscale taylor model-based constitutive theory describing grain growth in polycrystalline cubic metals. ]. Mech.
Phys. Solids 63, 1.

Theyssier, M., Driver, ]., 1999. Recrystallization nucleation mechanism along boundaries in hot deformed al bicrystals. Mater. Sci. Eng. A 272, 73—82.

Tonks, M., Millett, P., 2011. Phase field simulations of elastic deformation-driven grain growth in 2d copper polycrystals. Mater Sci. Eng. A 528, 4086—4091.

Tonks, M., Millett, P., Cai, W., Wolf, D., 2010. Analysis of the elastic strain energy driving force for grain boundary migration using phase field simulation. Scr.
Mater 63, 1049—1052.

Vondrous, A., Bienger, P., Schreijag, S., Selzer, M., Schneider, D., Nestler, B., Helm, D., Monig, R., 2015. Combined crystal plasticity and phase-field method for
recrystallization in a process chain of sheet metal production. Comput. Mech. 55, 439—452.

Yogo, Y., Takeuchi, H., Ishikawa, T., Iwata, N., Nakanishi, K., 2009. Strain-induced boundary migration of carbon steel at high temperatures. Scr. Mater. 61,
1001-1003.

Zhao, L., Chakraborty, P., Tonks, M., Szlufarska, 1., 2017. On the plastic driving force of grain boundary migration: a fully coupled phase field and crystal
plasticity model. Comput. Mater. Sci. 128, 320—330.

Zhao, P, Low, T.S.E., Wang, Y., Niezgoda, S.R.,, 2016. An integrated full-field model of concurrent plastic deformation and microstructure evolution: appli-
cation to 3d simulation of dynamic recrystallization in polycrystalline copper. Int. J. Plast. 80, 38—55.


http://refhub.elsevier.com/S0749-6419(17)30338-8/sref8
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref8
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref9
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref9
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref10
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref10
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref10
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref10
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref11
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref11
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref12
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref12
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref13
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref13
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref14
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref14
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref15
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref15
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref16
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref16
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref17
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref17
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref17
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref18
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref19
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref19
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref19
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref20
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref20
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref21
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref21
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref21
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref22
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref22
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref23
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref23
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref23
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref24
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref24
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref25
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref25
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref26
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref26
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref27
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref27
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref28
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref28
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref28
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref29
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref29
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref30
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref30
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref31
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref31
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref32
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref32
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref33
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref33
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref33
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref34
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref34
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref34
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref35
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref35
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref35
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref36
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref36
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref37
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref37
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref37
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref38
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref38
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref38
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref39
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref39
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref39
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref40
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref40
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref40
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref41
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref42
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref43
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref43
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref44
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref44
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref45
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref45
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref45
http://science.sciencemag.org/content/341/6153/1461.full.pdf
http://science.sciencemag.org/content/341/6153/1461.full.pdf
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref47
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref47
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref48
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref48
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref49
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref49
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref50
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref50
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref51
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref51
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref51
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref52
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref52
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref52
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref52
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref52
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref53
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref53
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref53
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref54
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref54
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref54
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref55
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref55
http://refhub.elsevier.com/S0749-6419(17)30338-8/sref55

	Constitutive modeling of strain induced grain boundary migration via coupling crystal plasticity and phase-field methods
	1. Introduction
	2. Mesoscale continuum theory
	2.1. Governing variables
	2.2. Second law of thermodynamics
	2.3. Microkinematical hypotheses
	2.4. Free energy
	2.5. Evolution of dislocation density
	2.6. Dissipation inequality
	2.7. Constitutive equations for stress and micro-traction
	2.8. Viscoplastic flow rule
	2.9. Kinetic relations for species volume fraction

	3. Computational homogenization
	4. Time integration procedure
	5. Results and discussion
	5.1. Determination of material parameters for single crystal tantalum
	5.2. Determination of model parameters for grain boundary migration
	5.3. Analysis of SIBM in a tantalum bicrystalline RVE
	5.4. Simulation of SIBM in tantalum polycrystalline RVE and comparison with experiments

	6. Conclusions
	References


