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Abstract

A phase field method for brittle fracture is formulated for a finite strain elasto-viscoplastic material using a novel obstacle
phase field energy model. The obstacle energy model results in a crack profile with compact support, and thus gives a physically
realistic description of the material behaviour at the vicinity of the crack tip. The resulting variational inequality is discretised by
a finite element method, and is efficiently solved using a reduced space NEWTON method. The solution accuracy and numerical
performance of this method is compared with a conventional phase field energy model for brittle fracture through representative
examples, and a significant reduction in the numerical solution cost is demonstrated.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The prediction of crack initiation and propagation in microstructures in relation to its myriad configurations is of
critical importance in the design of heterogeneous materials [1–3]. Traditional methods to characterise material failure
are expensive and slow as they rely heavily on experiments [4–6]. Alternatively, numerical simulations can be used
to substitute this process through predictive frameworks incorporating accurate constitutive models of the anisotropic
and non-linear material behaviour, frequently encountered in engineering applications prior to failure [7,8]. In the
field of continuum damage mechanics, damage is described as an internal state variable of the material [9,10], and
thermodynamic frameworks have been developed that can describe the evolution of the internal damage state in a
general setting [11–13]. The recently developed micromorphic approach of Forest [14] provides a link between these
thermomechanical field theories and existing gradient methods [15,16], where the relationship between the internal
state variable and the non-local field variable is enforced in a weak sense.
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In recent years, the phase field method (PFM) has emerged as a powerful and versatile tool to model brittle fracture
and non-local damage processes [17–22]. This is almost certainly true from a multiphysics perspective, since, a phase
field approach facilitates the modelling of any number of coupled chemical, thermal and deformation processes having
an influence on the stored energy of the material [23]. The PFM for brittle fracture is based on the recently developed
variational theory [24,25], which is an extension of the classical theory of GRIFFITH. However, with the notable
exceptions of Borden et al. [21] and Miehe et al. [26], the application of these PFMs to the general case of a finite strain
elasto-viscoplastic material has been relatively unexplored. Following the terminology of Cahn and Hilliard [27], the
phase field energy of an interface is composed of a gradient and a homogeneous contribution. The conventional
PFM for brittle fracture described in the above works use a quadratic model for the homogeneous contribution to
the phase field energy with a minimum at the undamaged material state. The regularised crack profile resulting from
the use of such an energy model decays exponentially away from the discrete crack surface, and thus does not have
compact support [18]. This non-compactness manifests in a non-physical influence of the discrete crack surface on
the constitutive response of a distant material point, and is especially pertinent for non-linear constitutive models,
where a small change in the elastic degradation, due to a decaying damage profile, can result in significant changes
in the constitutive response of a distant material point. The situation is exacerbated when studying crack nucleation
phenomena, where the absence of localised stress concentrations at a pre-existing crack tip can result is an extremely
diffused damage profile. In [16], a gradient damage model with a linear form of the homogeneous contribution to
the phase field energy is analysed. The resulting regularised crack profile has a compact support, thus resulting in
a physically desirable decoupling between the regularised crack profile and the constitutive response of a distant
material point.

In the current work, a PFM for brittle fracture is formulated, extending the approach of Pham et al. [16] for elasto-
viscoplastic materials undergoing large deformations. The linear model for the homogeneous phase field energy is
augmented with an indicator function to enforce constraints on the evolution of the damage phase field resulting
form physical considerations such as irreversibility and non-negativity, i.e. 0 ≤ ϕ (tn) ≤ ϕ (tn−1). A reduced space
NEWTON method [28] is then applied to efficiently solve the resulting variational inequality. This paper is organised
as follows: the derivation of the constitutive models and field equations are presented in Section 2, followed by an
outline of their numerical implementation in Section 3. In Section 4, representative examples are used to benchmark
and compare the proposed method with a conventional PFM for brittle fracture. A summary is provided in Section 5
along with perspectives for future applications.

2. Theory

2.1. Kinematics

Let B0 ⊂ R3 be a microstructural domain of interest, with boundary ∂B0. The deformation resulting from an
applied loading defines a field χ(x) : x ∈ B0 → y ∈ B mapping points x in the reference configuration B0 to points
y in the deformed configuration B. The total deformation gradient, given by F = ∂χ/∂x = ∇χ , is multiplicatively
decomposed into elastic and plastic components as F = FeFp. An anisotropic elastic stiffness, C, relates the elastic

deformation gradient, Fe to the second PIOLA–KIRCHHOFF stress, S = C (Fe
TFe − I)/2. The plastic velocity

gradient, Lp = ḞpFp
−1, is driven by S by virtue of the chosen plasticity model.

2.2. Thermodynamics

Restricting attention to isothermal and quasi-static processes with no external heat supply, the balance laws for
linear momentum, angular momentum, internal energy, and total entropy, given by Šilhavý [11, Chapter 3]

0 = Div P, FPT
= FTP, ε̇ = P · Ḟ, η̇ = π (1)

where, P is the first PIOLA–KIRCHHOFF stress, ε is the internal energy density, η represents the entropy density, and
π is the entropy production-rate density. Through the absolute temperature θ , the entropy balance (Eq. (1)4) can be
written in the corresponding dissipation balance form

θη̇ = δ (2)
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where δ := θπ represents the dissipation-rate density. Combination of Eqs. (1)3 and (2) then yields the reduced form

δ = P · ∇χ̇ − ψ̇ (3)

of the dissipation-rate density δ, again at constant temperature, where ψ := ε− θ η represents the free energy density.
All models for the free energy density to be discussed represent special cases of the general form

ψ = ψ

∇χ ,Fp, ξ , ϕ,∇ϕ


(4)

for this energy in terms of the inelastic local deformation, Fp, a set, ξ , of local internal variables, and the damage
phase field, ϕ.

Modelling the stress as purely energetic, we have

P = ∂∇χψ (5)

for the first PIOLA–KIRCHHOFF stress. In this case,
B0

δ dx = −


B0


∂ϕψ ϕ̇ + ∂∇ϕψ · ∇ϕ̇ + ∂Fp

ψ · Ḟp + ∂ξψ · ξ̇


dx

= −


B0


δϕψ ϕ̇ + ∂Fp

ψ · Ḟp + ∂ξψ · ξ̇


dx −


∂B0

∂∇ϕψ · n ϕ̇ ds (6)

follows from Eq. (4) for the dissipation rate with respect to B0, where

δx f = ∂x f − Div ∂∇x f (7)

represents the variational derivative. Assuming no-flux (Neumann) or constant-rate (Dirichlet) boundary conditions,
i.e.,

∂∇ϕψ · n|∂B0 = 0, or ϕ̇|∂B0 = 0 (8)

respectively, Eq. (6) reduces to the purely bulk form

δ = −δϕψ ϕ̇ − ∂Fp
ψ · Ḟp − ∂ξψ · ξ̇ (9)

for the dissipation rate and its density.
To model kinetics in the context of Eq. (9), attention is restricted here to constitutive relations based on the

dissipation potential

χ = χ(∂Fp
ψ, ∂ξψ, δϕψ). (10)

By design, this potential determines the dependent constitutive quantities

ϕ̇ = −∂δϕψχ, Ḟp = −∂∂Fpψ
χ, ξ̇ = −∂∂ξψχ (11)

and so the following residual form of the dissipation-rate density via Eq. (9)

δ = δϕψ ∂δϕψχ + ∂Fp
ψ · ∂∂Fpψχ

+ ∂ξψ · ∂∂ξψχ . (12)

Assuming further that χ is non-negative and convex in the thermodynamic driving forces, i.e.,

δϕψ ∂δϕψχ + ∂Fp
ψ · ∂∂Fpψχ

+ ∂ξψ · ∂∂ξψχ > χ > 0 (13)

the resultant constitutive form equation (12) is sufficient for fulfilment of the dissipation principle δ > 0.

2.3. Constitutive modelling

Using the above general formalism, a constitutive law is now reduced to specifying two potentials: the free energy,
ψ , and the dissipation potential, χ , along with a suitable parameterisation of the microstructure as a set of internal
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state variables. In the current constitutive model, the total free energy is separated

ψ = ψE + ψD + ψP (14)

into an elastic contribution, a damage contribution and a plastic contribution.

2.3.1. Brittle damage mechanics
In the current brittle damage constitutive model, the damage phase field variable, ϕ, is used to represent the elastic

degradation between undamaged, i.e. ϕ = 1, and completely damaged, i.e. ϕ = 0, states. A simple form of the elastic
free energy satisfying these requirements is given by,

ψE(∇χ ,Fp, ϕ) = ϕ2 ψ̃E(∇χ ,Fp) (15)

where, ψ̃E is the stored elastic energy density in the undamaged state.
The damage contribution to the free energy is given by the phase field approximation of the energy of a discrete

crack surface, and is composed of a gradient contribution and a homogeneous contribution

ψD(∇ϕ, ϕ) = ψG0 |∇ϕ|
2
+ ψH0(1 − ϕ)m + I[0,1](ϕ) (16)

where ψG0 and ψH0 are material constants, and m is the order of the phase field potential. The quadratic model for
the homogeneous contribution to the phase field energy, used in conventional PFMs for brittle fracture [17–19,21],
is recovered by setting m = 2, and the linear model of Pham et al. [16] is obtained by setting m = 1. The indicator
function on the interval [0, 1], defined such that I[0,1](ϕ) vanishes for ϕ ∈ [0, 1] and +∞ otherwise, is introduced to
enforce physically reasonable bounds for the damage phase field, i.e. 0 ≤ ϕ ≤ 1.

The thermodynamic driving forces conjugate to the phase field variable can be obtained from Eq. (9) as

δϕψ = 2ϕ ψ̃E − mψH0(1 − ϕ)m−1
− Div 2ψG0∇ϕ + µ (17)

where µ ∈ ∂I[0,1](ϕ) is the subdifferential of the indicator function. The constitutive description is completed by
specifying the following convex, non-negative form of the dissipation potential,

χD =
1
2

M

δϕψ

2 (18)

where M is a mobility parameter. Eq. (18) results in the following field equation for the evolution of ϕ

ϕ̇ = −M

2ϕ ψ̃E − mψH0(1 − ϕ)m−1

− Div 2ψG0∇ϕ + µ

. (19)

2.3.2. Phenomenological crystal plasticity
The crystal plasticity model used in the present study (for details see [29]), is an adoption of the phenomenological

description of Peirce et al. [30] for face-centred cubic crystals. The plastic velocity gradient Lp is composed of the
slip rates γ̇ α on each of the 12 FCC {111}⟨1̄10⟩ slip systems, which are indexed by α = 1, . . . , 12.

Lp = ḞpFp
−1

=


α

γ̇ α sα ⊗ nα (20)

where sα and nα are unit vectors along the slip direction and slip plane normal, respectively. The thermodynamic
driving force conjugate to Fp, given by

∂Fp
ψ = −ϕ2 S Fp

−T (21)

can then be reduced to the simpler slip system based conjugate pair

− ∂Fp
ψ · Ḟp =


α

∂γ αψ γ̇
α, where ∂γ αψ = −ϕ2 S · (sα ⊗ nα) = −τα (22)
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the plasticity constitutive equations are given by

γ̇ α = ∂ταχP = γ̇0

ταgα

n

sgn

τα


(23)

in terms of,

χP =
1

n + 1


α

γ̇0

ταgα

n+1

. (24)

The slip resistances on each slip system, gα , evolve asymptotically towards g∞ with shear γ β (β = 1, . . . , 12)
according to the relationship

ġα = γ̇ β h0
1 − gβ/g∞

a
sgn


1 − gβ/g∞


hαβ (25)

with parameters h0 and a. The interaction between different slip systems is captured by the hardening matrix hαβ .

2.4. Interface energy scaling

The energy coefficients ψH0 and ψG0 in the phase field energy in Eq. (16) can be related to the interface energy,
g0, by following the general approach of Cahn and Hilliard [27] for an infinite 1D domain, where

g0 =


∞

−∞

ψ(x) dx . (26)

Neglecting elastic contributions, the free energy density, ψ , consists of a homogeneous and gradient contribution

ψ(x) = ψH(ϕ(x))+ ψG(∂xϕ(x)), ψG(∂xϕ) = ψG0 |∂xϕ|
2 (27)

where ψG0 is a material constant. Together with the boundary conditions ϕ(±∞) = φ± and ∂xϕ(−∞) = 0, we have
at equilibrium

δϕψ = 0 =⇒ ∂ϕψH = ∂x∂∂xϕψG = ∂x {2ψG0 ∂xϕ} = 2ψG0 ∂x∂xϕ. (28)

Multiplying both sides by ∂xϕ and integrating yields x

−∞

2ψG0 ∂ξ∂ξϕ ∂ξϕ dξ =

 x

−∞

∂ξψG(∂xϕ(ξ)) dξ = ψG(∂xϕ(x)) (29) x

−∞

∂ϕψH ∂ξϕ dξ =

 x

−∞

∂ξψH(ϕ(ξ)) dξ =

 ϕ(x)

ϕ−

∂ζψH(ζ ) dζ = ∆ψH(ϕ(x)) (30)

where ∆ψH(ϕ(x)) = ψH(ϕ(x))− ψH(ϕ−). For ψG(∂xϕ(x)) in equilibrium

|∂xϕ| =


∆ψH(ϕ)

ψG0
, and ψ = ψH + ∆ψH (31)

then follows for the equilibrium form of ∂xϕ and ψ . Using Eq. (31), to obtain the following change of variables

dx =
1
∂xϕ

dϕ = sgn(∂xϕ)


ψG0

∆ψH(ϕ)
dϕ (32)

the integral in Eq. (26) can be evaluated to yield the following relation between ψG0 and g0

g0 = κH0

ψG0, κH0 = sgn(∂xϕ)

 ϕ+

ϕ−

ψH(ϕ)+ ∆ψH(ϕ)
√

∆ψH(ϕ)
dϕ. (33)
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Assuming that the midpoint of the regularised crack surface is at x = 0. Let l0 > 0 represent the interface width in
the sense that ϕ(±l0/2) ≈ ϕ±. The Taylor-series expansion ϕ(x) = ϕ(0)+∂xϕ(0) x +

1
2∂

2
xϕ(0) x2

+· · · then implies

ϕ+ − ϕ− = ∂xϕ(0) l0 −
1

24∂
3
xϕ(0) l3

0 + · · · ≈ ∂xϕ(0) l0 (34)

in the case of a flat interface. Since l0 > 0 by definition,

l0 =
|ϕ+ − ϕ−|

|∂xϕ(0)|
, sgn(∂xϕ(0)) = sgn(ϕ+ − ϕ−). (35)

Given Eq. (35), Eq. (31) implies the connection

l0 = κG0


ψG0, κG0 =

|ϕ+ − ϕ−|
∆ψH(ϕ0)

, (36)

between ψG0 and l0, with ϕ0 = ϕ(0). Combination of Eqs. (33) and (36) then implies the result for ψG0

ψG0 =
g0l0
κH0κG0

. (37)

Considering the scaled form of the homogeneous energy, ψH(ϕ) = ψH0 ϕH(ϕ), with ψH0 constant and ϕH(ϕ)

dimensionless, Eqs. (33) and (36) yields

ψH0 =
cG0

cH0

g0

l0
, ψG0 =

1
cH0cG0

g0l0 (38)

where

cH0 := sgn(ϕ+ − ϕ−)

 ϕ+

ϕ−

ϕH(ϕ)+ ∆ϕH(ϕ)
∆ϕH(ϕ)

dϕ, cG0 :=
|ϕ+ − ϕ−|
∆ϕH(ϕ0)

. (39)

The resulting scaled form of the free energy density, in terms of the interface energy g0 and interface width l0, is given
by

ψH(ϕ) =
cG0

cH0

g0

l0
ϕH(ϕ), ψG(∂xϕ) =

1
cH0cG0

g0l0 |∂xϕ|
2. (40)

In particular, the form of the homogeneous energy used in Eq. (16), i.e. ϕH = (1 − ϕ)m , yields cH0 =
4

m+2 and

cG0 =
√

2m . In the simplest case of ideal brittle failure, the vanishing of l0 corresponds to classic GRIFFITH failure
[17,16].

3. Numerical implementation

The constitutive model introduced in Section 2.3 is implemented within the material simulation kit, DAMASK [31],
and a large-scale parallel finite element (FE) code using the PETSc numerical library [32], is developed to handle the
discretisation and numerical solution of the coupled field equations.

3.1. Finite element implementation

The starting point for the FE implementation of the field equations (1)1 and (19) is their weak forms, given by

0 =


B0

∇δχ · P dx (41)

0 ≤


B0


(δϕ − ϕ)


ϕ̇

M
+ 2ϕ ψ̃E − mψH0(1 − ϕ)m−1


− ∇ (δϕ − ϕ) · 2ψG0∇ϕ


dx (42)



P. Shanthraj et al. / Comput. Methods Appl. Mech. Engrg. 312 (2016) 167–185 173

where δχ and δϕ are the virtual deformation and damage phase fields respectively, such that 0 ≤ δϕ ≤ 1. No-flux
(Neumann) boundary conditions are assumed for the sake of simplicity. Note that the evolution of the phase field
variable, given in its strong form by Eq. (19), is formulated here in its weak form as a variational inequality.

The deformation field, χ (x), and damage phase field, ϕ (x), in addition to their virtual counterparts δχ (x) and
δϕ (x) are discretised as χ̃ (x), ϕ̃ (x), ˜δχ (x) and ˜δϕ (x) respectively, using FE shape functions

χ̃(x) =


i

Nχ
i (x)χ̃ i , and ϕ̃(x) =


i

Nϕ
i (x)ϕ̃i (43)

˜δχ(x) =


i

Nχ
i (x) ˜δχ i , and ˜δϕ(x) =


i

Nϕ
i (x) ˜δϕi (44)

where, χ̃ i , ϕ̃i , ˜δχ i , and ˜δϕi are the degrees of freedom of the respective discretised field. Nχ
i and Nϕ

i are the FE shape
functions, and the corresponding discrete differential operator matrices are Bχ

i and Bϕi . Under these approximations,
the weak form equations (41) and (42) can be rewritten as

Rmech :=


i

˜δχ
T
i


B0

([Bχ
i ]

T )P̃d B0 = 0 (45)

and

Rdam :=


i

[ ˜δϕ − ϕ̃]
T
i


B0

[Nϕ
i ]

T


Nϕ

i
˜̇ϕi

M
+ 2ψ̃E Nϕ

i ϕ̃i − mψH0 Nϕ
i [1 − ϕ̃i ]

m−1


dx

−


i

[ ˜δϕ − ϕ̃]
T
i


B0

[Bϕi ]
T 2ψG0Bϕi ϕ̃i dx ≥ 0 (46)

which defines a non-linear system of constrained equations for the unknowns ([χ̃ ]i , [ϕ̃]i ). A time-discrete system of
equations is obtained by using a backward EULER approximation

˜̇ϕ =
ϕ̃(tn)− ϕ̃(tn−1)

∆t
(47)

of the rate ˜̇ϕ in Eq. (46). Furthermore, irreversibility of the damage process can be enforced in the time discrete setting
by restricting the trial space in the variational inequality such that 0 ≤ δϕ̃ ≤ ϕ̃(tn−1).

3.2. Numerical solution

The solution approach followed in this work involves solving the block lower triangular form of the coupled
system of equations (45) and (46) within a staggered iterative loop until a self consistent solution is achieved for a
time increment. The procedure is detailed in Algorithm 1. Through such a staggered approach, the solution scheme of
each field can be described independently.

The mechanical equilibrium equation (45) is solved using an inexact NEWTON method with a critical point secant
line search [33]. Within each NEWTON iteration, a flexible GMRES linear solver [34] preconditioned with a smoothed-
aggregation algebraic multigrid method [35] is used for the linear solve.

The variation inequality (46) for the evolution of the phase field variable is solved using reduced space
NEWTON method [28]. In this approach, the phase field system is partitioned into sets composed of degrees of freedom
on which the upper and lower bound constraints are active, respectively A+ and A−, given by

A+(tn) =

i |ϕ̃i (tn) ≥ ϕ̃i (tn−1) and Rdam,i ≤ 0


(48)

A−(tn) =

i |ϕ̃i (tn) ≤ 0 and Rdam,i ≥ 0


(49)

and their complement, the inactive set, I , composed of the phase field degrees of freedom on which the upper and
lower bound constraints are inactive. Within each NEWTON iteration, a reduced system consisting the degrees of
freedom belonging to the inactive set is solved using direct factorisation. It is important to note here that the size of
the inactive set, I , is expected to be significantly larger when using a quadratic energy model compared to a linear
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energy model for the homogeneous contribution to the phase field energy in Eq. (16), since the quadratic energy model
crack profile has non-compact support.

Algorithm 1: Staggered algorithm for field solution in [tn−1, tn].
Data: [χ ]tn−1 , [ϕ]tn−1

Result: [χ ]tn , [ϕ]tn
1 Initialisation:

[ϕ]0
tn = [ϕ]tn−1

,

[χ ]0
tn = [χ ]tn−1

,

Impose boundary conditions in the vectors: [χ ]1
tn , [ϕ]1

tn

j = 1

2 while ∥ [ϕ] j
tn − [ϕ] j−1

tn ∥2 ≥ tolϕ and ∥ [χ ] j
tn − [χ ] j−1

tn ∥2 ≥ tolχ do
3 solve Rmech([χ ] j

tn ,[ϕ] j−1
tn ) = 0 for [χ ] j

tn ;

4 solve Rdam([χ ] j
tn ,[ϕ] j

tn ) = 0 for [ϕ] j
tn ;

5 j = j+1
6 end
7

[ϕ]tn = [ϕ] j
tn ,

[χ ]tn = [χ ] j
tn

4. Results and discussion

4.1. Notch tension test

A square plate of length 1 mm, containing a horizontal notch of length 0.25 mm and tip radius 0.05 mm, is
subjected to uniaxial tension strain of 0.02% by prescribing a vertical displacement on the top and bottom boundaries.
The geometry and boundary conditions used are illustrated in Fig. 1a. An isotropic elastic material model is used with
elastic constants, C11 = 168.0 GPa and C12 = 121.4 GPa, interface energy, g0 = 2.5 J m−2, and interface width,
l0 = 25 µm. The plate is meshed using simplex elements, and to study the effect of element size, three different
meshes having element sizes 2 µm, 5 µm and 10 µm respectively are considered.

The load–displacement curves are shown in Fig. 2. For the linear energy model, global unloading is observed to
initiate at a displacement of 0.12 µm, and the unloading behaviour is similar for the range of element sizes considered.
The load–displacement curve resulting from the use of a linear and quadratic energy model for the intermediate mesh
is also compared in Fig. 2. While global unloading is observed to initiate at the same displacement in both cases, a
sharper transition from damaged to un-damaged states is observed in the case of the linear model. The damage phase
field for the mode I crack resulting from the linear and quadratic energy model is shown in Fig. 3. It can be observed
that the quadratic energy model damage phase field is diffused compared to the linear energy model damage phase
field, which has a compact support. The damage phase field profile along a section through the crack is shown in
Fig. 4. A crack half-width of around 50 µm, i.e. 2l0, is observed for all the meshes considered. The crack profile
resulting from the linear energy model is observed to increase rapidly to the undamaged state, i.e. ϕ = 1, whereas the
crack profile resulting from the quadratic energy model is observed to be more diffuse.

The evolution of the total, bulk and surface energies for the different element sizes are shown in Fig. 5. It is seen
that, initially, the total energy is composed primarily of the bulk elastic energy, which increases quadratically with
displacement as expected for a linear elastic material. At the critical point, at a displacement of 0.12 µm, a dissipation
of the elastic energy resulting from the material unloading due to crack propagation is observed accompanied by a
sharp increase in the surface energy contribution from the resulting crack surface. When the material is fully fractured,
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Fig. 1. Two-dimensional elastic plate with edge notch subjected to (a) uniaxial tension and (b) simple shear loading conditions.

Fig. 2. Load–displacement curves for a notched elastic plate subjected to uniaxial tension.

the surface energy reaches a steady state value corresponding to the surface energy of the full crack, while the elastic
bulk energy is fully dissipated. The resulting surface energy of the crack is overestimated in the coarser meshes
for both linear and quadratic energy models, and converges to the theoretically predicted value of around 187.5 µJ,
i.e. g0lc for a final crack length lc = 0.75 mm, for the fine mesh. It is also noted that the resulting fracture energy is
higher than that of the theoretically predicted value in both linear and quadratic case, with the deviation being larger
in the quadratic model. An overestimation of the fracture energy is expected, and can be overcome through the use of
a back-tracking solution algorithm [36].

In order to compare the numerical performance of the two energy models, the number of staggered iterations
required for Algorithm 1 to converge is plotted as a function of the loading in Fig. 6. During the unloading period,
the linear energy model requires between 6 and 9 staggered iterations for each load increment to converge, compared
to between 4 and 9 iterations required by the quadratic energy model. However, due to the sharp transition between
undamaged and fully damaged states, the linear model results in a more numerically efficient method overall, with a
total of 3037 staggered iterations required compared with 3321 iteration required by the quadratic model.
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Fig. 3. The damage phase field in a notched elastic plate subjected to uniaxial tension using (a) a linear energy model and (b) a quadratic energy
model.

Fig. 4. The damage phase field profile across the crack in a notched elastic plate subjected to uniaxial tension.

4.2. Notch shear test

A square plate of length 1 mm, containing a horizontal notch of length 0.5 mm and tip radius 0.01 mm, is subjected
to a simple shear strain of 0.025% by prescribing a horizontal displacement on the top and bottom boundaries, while
fixing the vertical displacements. The geometry and boundary conditions used are illustrated in Fig. 1b. An isotropic
elastic material model is used with elastic constants, C11 = 168.0 GPa and C12 = 121.4 GPa, interface energy,
g0 = 2.5 J m−2, and interface width, l0 = 20 µm. The plate is meshed using simplex elements, with an element size
of 5 µm.

The load–displacement curves are shown in Fig. 7. In both the linear and quadratic energy models, global unloading
is observed to initiate at a displacement of 0.17 µm. Similar to the tensile case, a sharper transition from damaged
to un-damaged states is observed in the linear case compared to the quadratic energy model. The resulting crack
patterns are shown in Fig. 8. In order to account for damage only in tension, the elastic energy is split into tensile and
compressive components, with damage only affecting the tensile component [17,18,37,22]. The notch shear test has
been extensively used as a benchmark in the PFM literature [18,22], and the crack pattern resulting from the linear
energy model compares favourably with these works. Furthermore, it is observed that the resulting damage profile is
compactly supported around the crack surface. On the other hand, the crack pattern resulting from the quadratic energy



P. Shanthraj et al. / Comput. Methods Appl. Mech. Engrg. 312 (2016) 167–185 177

Fig. 5. The evolution of the total, bulk and surface energies during mode I cracking of a notched elastic plate using (a) a linear energy model and
(b) a quadratic energy model.

Fig. 6. Load–displacement curves for a notched elastic plate subjected to simple shear.

model exhibits a significantly diffused damage profile, which results in spurious damage evolution at the specimen
corners due to the long range interaction between the phase field and the material response.
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Fig. 7. Load–displacement curves for a notched elastic plate subjected to simple shear.

Fig. 8. The damage phase field in a notched elastic plate subjected to simple shear tension using (a) a linear energy model and (b) a quadratic
energy model.

4.3. Polycrystal

To study crack nucleation phenomena in more complex engineering materials, the developed PFM is applied to
study the deformation and failure of a plastically deforming polycrystalline material. The polycrystalline patch used,
shown in Fig. 9, was generated by a VORONOI tessellation of 30 seed points randomly distributed within a square
domain of length 1 mm, and the orientations of the individual grains were assigned randomly. A uniform simplex
mesh of the polycrystalline patch was then generated, resulting in a uniform mesh with an average element size of
1.5 µm. LAGRANGE P2 and P1 elements were used to discretise the deformation and damage phase fields respectively.
The patch is loaded through a displacement boundary condition applied in the horizontal direction at a nominal strain
rate of 0.01 s−1, up to a final time of 2 s, in 200 uniform increments. A phenomenological crystal plasticity constitutive
model is used, and the material parameters are listed in Table 1.

The results obtained using a linear energy model are compared with the results obtained using a conventional
quadratic energy model. Fig. 10 shows the evolution of the linear energy model damage phase field at different stages
of the fracture process. It is again observed that the resulting profile of the regularised crack surface is compact. Fig. 11
shows the evolution of the quadratic energy model damage phase field. The non-compact character of the crack profile
is exacerbated by the absence of a strong stress concentration at a pre-existing crack tip during nucleation.
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Fig. 9. Polycrystalline patch generated from a VORONOI tessellation of 30 randomly distributed seed points. Each colour represents a randomly
assigned crystallographic orientation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 10. Linear energy model: Evolution of the damage phase field in a polycrystalline patch loaded with a nominal strain rate of 0.01 s−1 at (a)
1.21 s, (b) 1.41 s, (c) 1.51 s and (d) 1.61 s.

The resulting normal component of the stress tensor in the loading direction for the linear and quadratic energy
models are shown in Figs. 12 and 13 respectively. Differences are observed in the linear and quadratic energy model
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Fig. 11. Quadratic energy model: Evolution of the damage phase field in a polycrystalline patch loaded with a nominal strain rate of 0.01 s−1 at
(a) 1.16 s, (b) 1.21 s, (c) 1.26 s and (d) 1.31 s.

Table 1
Material parameters: elastic constants Cab , reference
shear rate γ̇0, stress exponent n, initial and saturation
flowstress s0 (or τ0) and s∞ (or τ∞), hardening
parameters h0, hαβ , and a, interface energy, g0,
characteristic length, l0, and damage mobility, M.

Parameter Unit Value

C11 GPa 168.0
C12 GPa 121.4
C44 GPa 28.34

γ̇0 s−1 1e−3
n 20
g0 MPa 31
g∞ MPa 63
a 2.25
h0 MPa 75
Coplanar hαβ 1
Non-coplanar hαβ 1.4

g0 J m−2 1.0
l0 µm 1.5
M s−1 0.01
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Fig. 12. Linear energy model: Evolution of the horizontal normal stress component in a polycrystalline patch loaded with a nominal strain rate of
0.01 s−1 at (a) 1.21 s, (b) 1.41 s, (c) 1.51 s and (d) 1.61 s.

stress field distributions in the vicinity of the crack tip, which is attributed to the differences in the corresponding crack
profiles. In a plastically deforming material, where small differences in the stresses can result in markedly different
material response, such a spurious long range influence of the quadratic energy model stress field can be significant.
Crack branching is observed following nucleation in the evolution of the linear energy model damage phase field,
which is absent in the evolution of the quadratic energy model damage phase field, and is attributed to the differences
in resulting stress fields and damage profiles during crack nucleation.

The crack nucleation is observed at a quadruple grain boundary junction in both cases. Crack nucleation at high
order grain boundary junctions occurs due to the incompatibility of the plastic deformation modes in the respective
grains forming the junction, which results in large stresses. Crack nucleation and its subsequent evolution during
deformation strongly depends on the texture of the material due to the anisotropy of the plastic deformation modes,
and highlights the need for accurate constitutive models. The nucleation and growth of a crack is followed by an
unloading of the material behind the crack tips and a general redistribution of the stress field. The propagation of a
nucleated crack is determined by the energetics of the material surrounding the crack tip. The crack tip stress field,
and hence the elastic energy release rate is maximum in the direction of the crack, which results in a strong driving
force for the propagation of the crack in this direction. However, the crack propagation path in engineering materials is
rarely straight at the microstructural scale, and a significant amount of crack kinking is predicted by the model, due to
the heterogeneity of the stress field in the neighbourhood of the crack tip. Crack kinking is observed towards regions
of stress concentrations in neighbouring grain boundary junctions. The global stress response and its subsequent
unloading at a stress of around 110 MPa is shown in Fig. 14. A slight difference in the global yielding behaviour of
the material prior to crack nucleation is observed, which is attributed to the differences in the linear and quadratic
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Fig. 13. Quadratic energy model: Evolution of the horizontal normal stress component in a polycrystalline patch loaded with a nominal strain rate
of 0.01 s−1 at (a) 1.16 s, (b) 1.21 s, (c) 1.26 s and (d) 1.31 s.

Fig. 14. Global stress response of the polycrystalline patch with linear and quadratic energy models.

energy model damage profiles, i.e. the linear energy model damage profile is fixed at the upper bound, while the
quadratic energy model damage profile evolves prior to crack nucleation.
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Fig. 15. Evolution of the inactive set size during the deformation and fracture of the polycrystalline patch with linear and quadratic energy models.

The evolution of the size of the inactive set resulting from the constraints the damage phase field (Section 3) is
shown in Fig. 15. The size of the inactive set determines the system size of the phase field equations to be solved
and is a good indicator of the numerical cost of the method. The inactive set resulting from the linear energy model
is empty prior to crack nucleation as all the phase field degrees of freedom are fixed at the upper bound, while the
inactive set resulting from the quadratic energy model is full prior to crack nucleation. Subsequent to crack nucleation,
the increase in the linear energy model inactive set size corresponds to the degrees of freedom along the growing crack
interface, while the decrease in the quadratic energy model inactive set corresponds to the degrees of freedom inside a
fully damaged region, where the lower bound constraint is active. During crack propagation, a difference in the inactive
set size of more than two orders of magnitude in observed, which translates to significant reduction in numerical cost
of the linear energy model PFM compared with the quadratic energy model PFM.

5. Conclusions

In the current work, a PFM for brittle fracture is formulated for a finite strain elasto-viscoplastic material. In the
approach followed, a novel obstacle phase field energy model is proposed, which results in a physically realistic
description of the material behaviour in the vicinity of the crack tip. The resulting constraints on the evolution of
the phase field variable is formulated as a variational inequality, and an efficient reduced space NEWTON method is
used to solve the discretised system of equations. Coupling with mechanical equilibrium is performed in staggered
iterations till a consistent solution is obtained.

Analytical scaling relations for the interface energy are established for the proposed energy model, and the resulting
PFM is applied to investigate the finite-strain deformation and failure of a edge-notched and polycrystalline material.
The resulting crack pattern in the edge-notched specimen under tension and simple shear loading is used to validate
the method. The compact nature of the resulting damage profile is seen to alleviate boundary artefacts observed in
a conventional PFM, and provides a more physically realistic representation of the crack tip. In the polycrystalline
material, crack nucleation and propagation is critically dependent upon the anisotropic plastic response of the material
and microstructural heterogeneity, with grain junctions serving as favourable sites. A reduction in the numerical cost
of solving the phase field problem of more than two orders of magnitude is achieved for the proposed linear order
PFM compared with a conventional quadratic order PFM. Additionally, a fewer number of iterations is required for
convergence of the staggered scheme, thus reducing the overall numerical cost, which is dominated by the mechanical
problem. The proposed method is capable of predicting complex crack patterns resulting from a rich set of interrelated
driving forces, typically observed in the failure of engineering materials.
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Appendix. Notation

As a general scheme of notation, vectors are written as boldface lowercase letters (e.g. a, b), second-order tensors as
boldface capital letters (e.g. A, B), and fourth-order tensors as blackboard-bold capital letters (e.g. A, B). For vectors
and tensors, Cartesian components are denoted as, respectively, ai , Ai j and Ai jkl . Second-order tensors are represented
in this work as linear mappings between vectors and is denoted as Ab (in components Ai j b j , implicit summation over
repeated indices is used unless specified otherwise) and, likewise, fourth-order tensors represent linear mappings
between second-order tensors and is designated as AB (Ai jkl Bkl ). The composition of two second-order tensors is
denoted as AB (Aik Bkj ). The tensor (or dyadic) product between two vectors is denoted as a ⊗ b (ai b j ). All inner
products are indicated by a single dot between the tensorial quantities of the same order, e.g., a · b (ai bi ) for vectors
and A · B (Ai j Bi j ) for second-order tensors. The transpose, AT, of a tensor A is denoted by a superscript “T”, and the
inverse, A−1, by a superscript “−1”. Additional notation is introduced where required.
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