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A B S T R A C T

A finite-strain anisotropic phase field method is developed to model the localisation of damage
on a defined family of crystallographic planes, characteristic of cleavage fracture in metals. The
approach is based on the introduction of an undamaged configuration, and the inelastic
deformation gradient mapping this configuration to a damaged configuration is microstructu-
rally represented by the opening of a set of cleavage planes in the three fracture modes. Crack
opening is modelled as a dissipative process, and its evolution is thermodynamically derived. To
couple this approach with a physically-based phase field method for brittle fracture, a scalar
measure of the overall local damage is introduced, whose evolution is determined by the crack
opening rates, and weakly coupled with the non-local phase field energy representing the crack
opening resistance in the classical sense of Griffith. A finite-element implementation of the
proposed model is employed to simulate the crack propagation path in a laminate and a
polycrystalline microstructure. As shown in this work, it is able to predict the localisation of
damage on the set of pre-defined cleavage planes, as well as the kinking and branching of the
crack resulting from the crystallographic misorientation across the laminate boundary and the
grain boundaries respectively.

1. Introduction

The failure of metals by cleavage has important consequences in a wide range of engineering applications (Curry and Knott,
1978; Beremin et al., 1983; Lu et al., 2000; Masolin et al., 2013), and identifying the microstructural features controlling cleavage
fracture remains an area of intensive research (Wang et al., 2008; Koyama et al., 2013; Novak et al., 2010; Li and Baker, 2010;
Kumar and Curtin, 2007). While the preference for metallic crystals to cleave on well defined crystallographic planes is supported by
a large body of experimental work (Riedle et al., 1996; Joo et al., 2012; Kumar and Curtin, 2007), the percolation of these cracked
crystallites across a heterogeneous microstructure, characterised by the presence of precipitates, grain and phase boundaries, is a
process that occurs over several time and length scales, and is not well understood. Numerical simulations can potentially be used to
reduce the multiscale complexity of the process and offer novel insights into the microstructural effects on material fracture (Bieler
et al., 2009; Shanthraj and Zikry, 2013), however, the strongly anisotropic nature of cleavage fracture makes this a challenging task.

The topic of anisotropic damage has received considerable attention by the modelling community in the past decades. In the field
of continuum damage mechanics, the earliest anisotropic models, developed by Dragon and Mroz (1979), Kachanov (1980), and
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Murakami (1988), represent the damage as a second order tensor. However, the anisotropy of families of cleavage planes with a
higher order of crystal symmetry cannot be represented by a second order tensor. Formulations using higher order tensors exist
(Chaboche, 1992; Simo and Ju, 1987), but come at the cost of an increasing number of state variables. In the microplane theory
(Carol and Bazant, 1997; Bazant and Prat, 1988), damage is considered locally on a set of predefined cleavage planes. This method,
however, suffers from the drawback that a damaged stress tensor cannot uniquely be constructed from a set of damaged tractions on
the individual planes. Furthermore, all these models are phenomenological, and the corresponding simulations must rely on
empirically fitted rather than on physically-derived and unique single crystal parameters.

In recent years, the phase field method has emerged as a powerful and versatile tool in the modelling of brittle fracture (Bourdin
et al., 2000; Miehe et al., 2010; Shanthraj et al., in press). The phase field model (PFM) for damage is based on the recently
developed variational theory of brittle fracture by Bourdin et al. (2008), which is an extension of the classical theory of Griffith.
However, with the exception of Clayton and Knap (2015, 2016) and Li et al. (2015), these extensions are isotropic in nature.
Incorporating anisotropic interface evolution in PFMs can be achieved by using a tensorial surface energy in higher order PFMs, or
through the introduction of an orientation dependent mobility (McFadden et al., 1993), both of which are less efficient than their
isotropic counterpart owing to the increased computational cost.

In the current work, a finite-strain anisotropic PFM is developed to model the localisation of damage on a pre-defined family of
crystallographic planes. The approach is based on the introduction of an undamaged configuration (Ekh et al., 2004; Menzel et al.,
2002), and the corresponding inelastic deformation gradient mapping this configuration to a damaged configuration. The evolution
of the damage deformation gradient is modelled by the opening of a set of cleavage planes in the three fracture modes, the evolution
of which is thermodynamically formulated similar to the approach of Aslan et al. (2011). To couple this approach with a PFM for
brittle fracture, a scalar measure of the overall local damage is introduced, whose evolution is determined by the crack opening rates,
and weakly coupled to the non-local phase field energy representing the crack opening resistance in the classical sense of Griffith.

This paper is organised as follows: the derivation of the constitutive models and field equations is presented in Section 2,
followed by an outline of their numerical implementation in Section 3. In Section 4 the results of two model problems are presented
and discussed. A summary is provided in Section 5 along with perspectives for future applications.

2. Theory

2.1. Basic relations

Let ⊂0
3 be a microstructural domain of interest, with boundary ∂ 0. The deformation resulting from an applied loading

defines a field χ x x y( ): ∈ → ∈0 mapping points x in the undeformed configuration 0 to points y in the deformed
configuration . The total deformation gradient, given by χ χF x= ∂ /∂ = ∇ , is multiplicatively decomposed as

F F F F= e d p (1)

where Fp is a lattice preserving isochoric mapping due to plastic deformation, Fd is a lattice distorting mapping due to crack opening
on a specified family of cleavage planes, and Fe is a mapping to the deformed configuration (see Fig. 1). In the current approach the
stress relaxation due to a damage process is captured through the stress-free deformation gradient, Fd. This is in contrast with

Fig. 1. Multiplicative decomposition of the deformation gradient, F. The plastic deformation gradient, Fp, relating the undeformed configuration to the plastically

deformed configuration, the damage deformation gradient, Fd , relating the plastically deformed configuration to the damaged configuration, and the elastic

deformation gradient, Fe, relating the damaged configuration to the deformed configuration.
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conventional PFMs for damage, where the damage stress relaxation is a result of a degradation of the material stiffness. Through
such an approach, anisotropic damage can be easily modelled by constraining Fd to evolve on a specified set of cleavage planes. Note
that the order, F F F F= e d p, is adapted for purely numerical reasons as it defines lattice invariant plastic intermediate configuration.

Restricting attention to isothermal and quasi-static processes with no external supplies of momentum or energy, the balance
relations for linear momentum, angular momentum, internal energy, and total entropy, are given by Šilhavý (1997)

ε η δ θ0 P FP F P P F= Div , = , ̇ = · ̇ , ̇ = / ,T T (2)

Here, P is the first Piola-Kirchhoff stress, ε is the referential internal energy density, η is the referential entropy density, θ is the
(constant) absolute temperature, and δ is the referential dissipation-rate density. Combination of (2)3,4 yields the form

δ ψP F= · ̇− ̇ (3)

for δ in terms of the referential free energy density ψ ε θη≔ − . The current model formulation is based on the basic constitutive form

ξψ ψ φ φF F F= ( , , , , , ∇ ),p d (4)

for ψ depending on a set ξ of local internal variables, the scalar damage phase field φ, and its gradient φ∇ . Modelling P as purely
energetic in this work, the hyperelastic relation

ψP = ∂F (5)

holds. On the kinetic side, modelling φ as a non-conservative phase field, the (time-dependent) Ginzburg-Landau model

φ Mδ ψ ψ φṅ = − in , ∂ · = 0 on ∂ , ̇ = 0 on ∂ ,φ φ0 ∇ 0
f

0
k (6)

(Allen and Cahn, 1979, e.g.,) applies assuming mixed no-flux, constant φ, boundary conditions. Here, M is the mobility,
δ f f f≔∂ − Div ∂x x x∇ is the variational derivative, ∂ ⊂ ∂0

k
0 represents the kinematic part, and ∂ ⊂ ∂0

f
0 is the flux part, of

∂ = ∂ ∪ ∂0 0
k

0
f . Together, (3)–(6) result in the residual form for the dissipation-rate density,

ξδ M δ ψ ψ ψ ψF F= ( ) − ∂ · ̇ − ∂ · ̇ − ∂ · ̇ξφ F F
2

p dp d (7)

2.2. Energetic constitutive relations

The free energy density (4) is modelled by the specific form

ξ ξψ φ φ ψ φ ψ ψ φ φF F F F F F( , , , , , ∇ ) = ( , , ) + ( ) + ( , ∇ )p d e p d
2

d I (8)

Here, ψe represents the density of elastic stored energy in the undamaged material, ψd is the density of stored energy released
during damage, and

ψ φ φ c
c

G
l

φ
c c

G l φ( , ∇ ) = (1 − ) + 1 |∇ |I
G0

H0

0

0 G0 H0
0 0

2
(9)

represents the stored energy density of the interface between undamaged φ( = 1) and damaged φ( = 0) regions. As detailed in
Shanthraj et al. (in press), ψI is scaled by the effective thickness, l0, and energy density, G l/0 0, of the interfacial region, and for the
current dependence of ψI on φ, c = 4/3H0 and c = 2G0 . In the context of brittle fracture, G0 is associated with the fracture energy,
and in the limit of a vanishing of l0 this corresponds to classical Griffith fracture (Bourdin et al., 2000; Pham et al., 2011).

The elastic energy, ψe, is modelled here relative to the damaged configuration by the form

ψ ψF F F F E F( , , ) ≡ (det ) ( , )e d p d ed d d (10)

in terms of the Green-Lagrange strain measure E F F I= ( − )d
1
2 e

T
e . Assuming that the work-conjugate 2nd Piola-Kirchhoff stress,

ψS 0: = ∂ =Ed edd at E 0=d , and E ≪ 1d , the following quadratic representation

ψ E F E F E( , ) = 1
2

· ( )ed d d d d d d (11)

in terms of Ed then holds, with the elastic stiffness relative to the damaged configuration,  ψF 0 F( )≔∂ ∂ ( , )E Ed d ed dd d . In the current
approach,  F( )d d is modelled on the push-forward

 F F F F F( )≔( □ ) ( □ )d d d d
T

p d
T

d (12)

(with A B C ACB( □ ) ≔ ) of the elastic stiffness with respect the plastical configuration, p, which is considered constant here as the
crystal lattice is unaltered by plastic deformation. Note that the dependence of d on Fd in (12) is purely configurational and is not
related to a damage mechanism. Substituting (12) into (11), results in the following reduced form for ψe

ψ ψF F F E E E( , , )≔ ( ) = 1
2

·e d p ep p p p p (13)

In terms of the work conjugate stress-strain pair pulled back to the plastic configuration,
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ψE F E F S E F S F F= and = ∂ = = detEp d
T

d d p ep p p d
−1

d d
−T

dp (14)

The 1st Piola−Kirchhoff stress tensor, P, is then related to Sp through

P F F S F= .e d p p
−T

(15)

Details of the work conjugate relations are provided in Appendix B.

2.2.1. Crystal plasticity
The plastic deformation gradient is given in terms of the plastic velocity gradient, Lp, by the flow rule

F L Ḟ =p p p (16)

where Lp is work conjugate with the Mandel stress in the plastic configuration,

ψM F F F F F S F F S= −∂ = ( ) ≈ .Fp p
T

e d
T

e d p d
T

d pp (17)

in the context of small elastic strains, i.e. E| | ≪ 1d . The crystal plasticity model used in the present study (for details see Roters et al.,
2010), is an adoption of the phenomenological description of Peirce et al. (1983). The plastic velocity gradient Lp is composed of the
slip rates γα̇ on each of the slip systems, which are indexed by α.

∑ γL F F s= ̇ = ̇ ⊗ n
α

α α α
p p p

−1

(18)

where sα and α∈ are unit vectors along the slip direction and slip plane normal, respectively. The plastic dissipation can then be
reduced to the simpler slip system based conjugate pair

∑ψ τ γ τF M s−∂ · ̇ = ̇ , where = ·( ⊗ n ).
α

α α α α α
F p pp

(19)

The plasticity constitutive equations are given by,

γ γ τ
g

τ̇ = ̇ sgn( )α
α

α

n
α

0
(20)

in terms of the reference shear rate γ0̇, and stress exponent n. The slip resistances on each slip system, gα, evolve asymptotically
towards g∞ with shear γ β (β = 1,…,12) according to the relationship

g γ h g g g g ḣ = ̇ 1 − / sgn(1 − / )α β β a β
αβ0 ∞ ∞ (21)

with parameters h0 and a. The interaction between different slip systems is captured by the hardening matrix hαβ. On this basis, non-
negativity of γ0̇, g∞, h0 and hαβ is sufficient to ensure non-negative plastic dissipation.

2.2.2. Damage
The damage deformation gradient is given in terms of the damage velocity gradient, Ld, by the flow rule

F L Ḟ =d d d (22)

where Ld is work conjugate with the Mandel stress in the damage intermediate configuration,

ψM F S F= −∂ = .Fd d
T

d dd (23)

The damage velocity gradient, Ld, is composed of the crack opening rates of a set of cleavage planes, oi̇
α, which are indexed by

α N= 1,…, c, in the three modes, i = 1, 2 and 3, illustrated in Fig. 2,

∑ oL F F M= ̇ = ̇
α i

i
α

i
α

d d d
−1

, (24)

Fig. 2. Crack opening modes of a crystallographic cleavage system, α, represented in terms of its local coordinate system.
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where, M n n= ⊗α α α
1 , M d n= ⊗α α α

2 and M t n= ⊗α α α
2 are the unit tensors of the different types of opening modes on cleavage plane

α with local coordinate system nα, dα, and tα. Taking ξ o= { }i
α , the damage dissipation is given by

∑ξψ ψ ς oF−∂ · ̇ − ∂ · ̇ = ̇ ,ξ
α i

i
α

i
α

F d
,

d
(25)

where

ς φ ψ φ gM M M M≔ · − ∂ = · −i
α

i
α

o i
α

crd
2

D d
2

i
α (26)

represents the thermodynamic driving force conjugate to oi
α, and the following simple form is assumed for the stored damage energy:

∑ψ g o=
α i

cr i
α

D
, (27)

The evolution equations for the internal states are then given by the power law form

o o
ς

φ g
̇ = ̇

〈 〉
.i

α i
α

cr

p

0 2 (28)

y

xz

2 Orientation 

Fig. 3. A laminate plate with edge notch subject to uniaxial tension in the vertical direction. The crystallographic orientations, in terms of Euler angles (Bunge
notation), of the individual lamellae are θ( °0°0°), θ(−2 °0°0°) and θ( °0°0°) respectively.

Fig. 4. Load-displacement curves for the notched elastic laminate plate subjected to uniaxial tension at different lamella orientations.
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where the threshold operator, 〈·〉, is used to reflect the sharp transition between damage and undamaged states. The non-negativity
of o0̇ and gcr is sufficient to ensure non-negative damage dissipation.

3. Numerical methods

3.1. Rate variational formulation of the initial boundary-value problems

Under certain conditions, the mechanical initial boundary-value problem (IBVP) can be formulated variationaly as the Euler-
Lagrange relations of energy potentials. This was extended to a formulation of coupled IBVPs for history dependent extended
continua as the stationarity conditions of energetic-kinetic rate potentials in, e.g., Svendsen (2004); Svendsen and Bargmann (2010)
and Gladkov and Svendsen (2015). This approach is completely general and independent of any numerical considerations. However,
for algorithmic and numerical solution purposes, it can be recast in incremental (i.e., time-integrated, semi-numerical) form. This
fact has been exploited for example by Miehe and co-workers to formulate variational algorithms for a number of material models
(Miehe et al., 2010; Miehe, 2011, 2014).

As detailed in Svendsen (2004), a rate-variational-based formulation of the IBVP is contingent in particular on the existence of a
dissipation potential for the model in question. For the current model, we have the flux-based

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟∑ ∑γd φ

g γ
n

γ
γ

φ g o
p

o
o M

φo( ,̇ ̇, ̇) =
̇

1/ + 1
| ̇ |

̇
+

̇
1/ + 1

̇
̇

+ 1
2

| ̇|
α

α α n

α i

i
α p

0

0

1 +1

,

2
cr 0

0

1 +1
2

(29)

form of this potential consistent with (6), (20) and (28). Besides this potential, the rate-variational formulation is based on the
energy storage-rate density, ζ. For the current model, this is given by

∑ ∑χ γ χζ φ φ τ γ ς o ψφ ψ φo P(∇ ̇ , ,̇ ̇, ̇, ∇ ̇) = ·∇ ̇ − | ∥ ̇ | − 〈 〉 ̇ + ∂ ̇ + ∂ ·∇ ̇
α

α α

α i
i
α

i
α

φ φ
,

∇
(30)

via the free energy density (4), the hyperelastic stress (5), as well as the evolution relations (20) and (28). Together, ζ and d
determine the volumetric part of the rate functional

∫ ∫R r r r ζ d rx s= d + d , where = + +v
∂

f v cf0 0 (31)

The additional contribution, r μφ λφ= ̇ + ̇c , enforces the constraints φ ∈ [0, 1], such that the complementarity relations, μ ≤ 0,
φ ≥ 0, and μφ = 0 holds for the lower bound, and λ ≥ 0, φ ≤ 1, and λφ = 0 holds for the upper bound (Benson and Munson, 2006).
The flux boundary conditions on ∂ f

0 is given by rf . In the context of (29) and (30), then, the first variation of R with respect to the
rates is given by

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭∫ ∫ ∫∑ ∑χ χδR δ r δ r δγ r δo δ r δφ r r δ r r δφx n s n s= · ̇ + ∂ ̇ + ∂ ̇ + ̇ d + {∂ + ∂ · }· ̇ d + {∂ + ∂ · } ̇dχ χ χ

α
γ

α

α i
o i

α
φ φ φ̇ v ̇ v

,
̇ v ̇ v

∂
̇ v ∇ ̇ v

∂
̇ v ∇ ̇ vα

i
α

f f0 0 0

(32)

Necessary conditions for δR vanishing in 0 are then

δ r δ ζ r ζ d τ g γ γ γ r ζ d

ς φ g o o δ r δ ζ δ d δ r δ ψ φ M μ λ

0 P= = = −Div , 0 = ∂ = ∂ + ∂ = − + (| ̇ |/ ̇ ) sgn( ̇ ), 0 = ∂ = ∂ + ∂

= −〈 〉 + ( ̇ / ̇ ) , 0 = = + + = + ̇/ + + ,

χ χ γ γ γ
α α α n α

o o o

i
a

i
a p

φ φ φ φ φ

̇ v ̇ ̇ v ̇ ̇ 0
1/

̇ v ̇ ̇

2
cr 0

1/
̇ v ̇ ̇ ̇ c

α α α
i
a

i
a

i
a

(33)

which is consistent with (2)1, (20), (28) and the constrained form of (6), respectively, as well as the boundary conditions on ∂ f
0

r r ψ r r ψ0 n p n n n= ∂ + ∂ · = − + ∂ · , 0 = ∂ + ∂ · = 0 + ∂ · .χ χ χ φ φ φ̇ f ∇ ̇ v f ∇ ̇ f ∇ ̇ v ∇ (34)

3.2. Finite element implementation

The rate-variational formulation yields the weak form of the field relations required for their finite-element (FE) implementation.
In particular, Eq. (33) yields directly the weak momentum balance relation

∫ ∫ ∫χ χ χr δ r δ δ0 x s P x= ∂ · ∇ ̇ d + ∂ · ̇ d = ∇ ̇ · dχ χ∇ ̇
∂

̇ ff0 0 0 (35)

where p 0=f is assumed for simplicity, and the weak Ginzburg-Landau relation

⎡
⎣⎢

⎤
⎦⎥∫ ∫ ∫δ r δφ δφ

M
φ φψ c

c
G
l

μ λ δφ G l
c c

φx x x0 = ̇d = ̇ 1 ̇ + 2 − + + d + ∇ ̇· ∇ dφ ̇ v D
G0

H0

0

0

0 0

G0 H00 0 0 (36)

where χδ ̇ and δφ ̇ are the virtual deformation and damage phase field rates respectively, such that δφ0 ≤ ≤ 1, and therefore
μδφ λδφ̇ + ̇ ≤ 0. No-flux boundary conditions are assumed for the sake of simplicity.
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The deformation field, χ x( ), and damage phase field, φ x( ), in addition to their virtual counterparts χδ ẋ ( ) and δφ ẋ ( ) are discretised
using a FE basis of shape functions, N χ

i , Ni
φ, N χ

i
δ ̇, and Ni

δφ ̇, where, χ∼i, φ∼i, χδ ̇i, and δφ ̇i are the respective degrees of freedom The
corresponding discrete differential operator matrices are B χ

i , Bi
φ, B χ

i
δ ̇, and Bi

δφ ̇. Under these approximations, the weak forms Eqs. (35)
and (36) can be rewritten as

∫∑ ∑χ χδ δB P x 0̇ [ ] d = ̇ = .∼χ

i
i
T

i
δ T

i
i
Ṫ

mech,i
0 (37)

and

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∫ ∫∑ ∑ ∑δφ N

N φ
M

ψ N φ c
c

G
l

δφ G l
c c

φ δφx B B ẋ [ ]
̇

+ 2 − d + ̇ [ ] d = ̇ ≥ 0
∼

∼ ∼
i

i
T

i
δφ T i

φ
i

i
φ

i
i

i
T

i
δφ T

i
φ

i
i

i
Ṫ

D
G0

H0

0

0

0 0

G0 H0
dam,i

0 0 (38)

which defines a non-linear system of equations for the unknowns χ φ( , )∼∼
i i . A time-discrete system of equations is obtained by using a

backward Euler approximation

φ φ t φ t
t

̇ = ( ) − ( )
▵

∼ ∼ ∼
n n−1

(39)

of the rate φ∼̇ in Eq. (38). Furthermore, irreversibility of the damage process can be enforced in the time discrete setting by modifying
the upper bound constraint such that φ t φ t0 ≤ ( ) ≤ ( )∼ ∼

i n i n−1 .
The solution approach followed in this work involves solving the coupled system of Eqs. (37) and (38) within a staggered iterative

loop until a self consistent solution is achieved for a time increment. The procedure is detailed in Algorithm 1. The advantage of such
a staggered approach is that the solution scheme of each field can be described independently. The mechanical equilibrium Eq. (37)
is solved using an inexact NEWTON method with a critical point secant line search (Eisenstat et al., 1994). Within each NEWTON

iteration, a flexible GMRES linear solver (Saad, 1993) preconditioned with a smoothed-aggregation algebraic multigrid method
(Vaněk et al., 1996) is used for the linear solve.

The variation inequality (38) for the evolution of the phase field variable is solved using the reduced space Newton method
(Benson and Munson, 2006). In this approach, the phase field system is partitioned into sets composed of degrees of freedom on
which the upper and lower bound constraints are active, respectively + and −, given by

t i φ t φ t( ) = { | ( ) ≥ ( ) and ≤ 0}∼ ∼
n i n i n+ −1 dam,i (40)

t i φ t( ) = { | ( ) ≤ 0 and ≥ 0}∼
n i n− dam,i (41)

and their complement, the inactive set, , composed of the phase field degrees of freedom on which the upper and lower bound
constraints are inactive. Within each Newton iteration, a reduced system consisting the degrees of freedom belonging to the inactive
set is solved using direct factorisation.

Algorithm 1. Staggered algorithm for field solution.
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3.3. Constitutive stress integration

To obtain the stress, P, resulting from a deformation, F, a partitioning of F, given by Eq. (1), is required. This non-linear problem
is approached by first solving for the kinematic quantities, i.e. F F,e d, and Fp, that is consistent with the resulting stress P, for a frozen
internal state of the material, followed by the evolution of the internal state variables using the updated kinematic quantities. This
approach is repeated in a staggered manner till a solution for the kinematic quantities that is consistent with the current internal
state variables is obtained.

The kinematic quantities, at a frozen internal state, are obtained by integrating the flow rules, given by Eqs. (16) and (22), over
the time interval, t▵ , using backward Euler time stepping, as

t t t tF I L M F( + ▵ ) = [ − ▵ ( )] ( )p 0 p p
−1

p 0 (42)

t t t tF I L M F( + ▵ ) = [ − ▵ ( )] ( )d 0 d d
−1

d 0 (43)

and, dropping the current time argument for brevity,

F FF F=e p
−1

d
−1

(44)

which represents an implicit system of equations as the stresses, Mp and Md, further depend on the kinematic quantities. A two-level
iterative predictor-corrector scheme for Lp and Ld, is used based on minimising the following residuals

Fig. 5. The final damage phase field distribution in the notched elastic laminate plate subjected to uniaxial tension using (a) θ = 10° and (b) θ = 20°. A damage phase
field value of 0 corresponds to a fully opened crack while 1 refers to fully coherent bulk matter.
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R L L M L L= − ( ( , ))p p p p p d (45)

R L L M L L= − ( ( , )).d d d d p d (46)

The coupled system of Eqs. (45) and (46) is solved, using a Newton method, within a staggered iterative loop, until a consistent
solution for Lp and Ld is achieved for a time step. The deformation gradient partitioning, and consequently the stresses, can be
obtained by substituting this solution back in to Eqs. (42) to (44). The internal state variables are then integrated for the updated
kinematic quantities and stresses, using backward Euler time stepping as

ξ ξ ξt t t S F F L L( ) = ( ) + ▵ ̇( , , , , )n n−1 p p d p d (47)

The overall solution procedure is detailed in Algorithm 2.

Algorithm 2. Algorithm for stress integration.

4. Results and discussion

The FE implementation of the developed damage model is applied to investigate the anisotropic crack propagation path both in a
laminate microstructure and in a polycrystalline model microstructure.

4.1. Notched laminate plate

A square plate of length 10 mm, containing a horizontal notch of length 2.5 mm and tip radius 0.5 mm, is subjected to uniaxial
tension strain of 0.02% by prescribing a vertical displacement on the top and bottom boundaries. The plate consists of three
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crystallographically distinct lamellar regions having equal width ahead of the notch as illustrated in Fig. 3. The orientation of each
crystal lamella, expressed as an Euler triplet (Bunge notation), is θ( °0°0°), θ(−2 °0°0°) and θ( °0°0°) respectively, and cleavage in each
crystal lamella is permitted only on the (010) plane. An isotropic elastic material model is used with elastic constants,C = 110.9 GPa11
and C = 58.4 GPa12 , interface energy, G = 0.2 Jm0

−2, interface width, l = 0.1 mm0 , and critical fracture stress, g = 10 MPacr . The plate
is meshed using Lagrange P2 elements elements having an element size of 0.05 mm.

To validate the anisotropic damage model, the above simulations are performed for values of θ ranging from 0° to 25° in

Fig. 6. Polycrystalline microstructure generated from a Voronoi tessellation of 20 randomly distributed seed points showing the initial orientation, θ( °0°0°), of the
individual grains in the polycrystal.

Table 1
Material parameters: elastic constants Cij, reference shear rate γ0̇ , stress exponent n, initial and saturation flowstress s0 (or τ0) and s∞ (or τ∞), hardening parameters
a, h0, and hαβ , surface energy, G0, characteristic length, l0, damage mobility, M, critical traction for cleavage, gcr, reference opening rate, o0̇, and damage rate
sensitivity, p.

Parameter Unit Value

C11 GPa 106.75
C12 GPa 60.41
C44 GPa 28.34

γ0̇ s−1 0.001

n 20
g0 MPa 31
g∞ MPa 63

a 2.25
h0 MPa 75
coplanar hαβ 1

non-coplanar hαβ 1.4

G0 Jm−2 0.085
l0 μm 1.5
M s−1 0.01
gcr MPa 300
o0̇ s−1 10
p 2
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increments of 5°. The corresponding load-displacement curves are shown in Fig. 4. Global unloading is observed to initiate at loads
ranging from 14 kN, for θ = 0°, to 15 kN, for θ = 25°. The increase in critical load with lattice orientation results from the projection
of the global stress state, i.e. uniaxial tensile stress, onto the rotated (010) plane. During the post-critical regime, a rapid initial
unloading is observed, corresponding to crack propagation in the weaker initial laminate, and is followed by a hardening effect as the
crack path is forced to kink abruptly by an angle of θ3 due to the lattice misorientation at the boundary with the stronger middle
laminate. As the crack transitions to the last, weaker laminate further global softening is observed followed by complete structural
failure. The alternating softening-hardening-softening effect of the laminate structure is more pronounced as the misorientation, i.e.
θ, increases.

The local crack path for the case of a low angle θ( = 10°) and high angle θ( = 20°) laminate misorientation is shown in Fig. 5. It is
verified that the anisotropic damage model is able to accurately predict the localisation of damage on the specified (010) planes in
each laminate for the highly anisotropic case of the large-angle crack kinking across the multiple laminate boundaries.

4.2. Polycrystalline model microstructure

To study crack nucleation phenomena in more complex engineering materials, the developed damage model is applied to study
the deformation and failure of a plastically deforming polycrystalline model material. The polycrystalline patch used, shown in Fig. 6,
was generated by a Voronoi tessellation of 20 seed points randomly distributed within a square domain of length 1 mm. The
individual grains were randomly misoriented about the z-axis, and the initial orientation of different grains is shown in Fig. 6.
Cleavage in each grain is permitted only on the {100} family of planes as often observed in metals and alloys. A uniform simplex
mesh of the polycrystalline patch was then generated, resulting in a uniform mesh with an average element size of 1.5 µm. Lagrange
P2 and P1 elements were used to discretise the deformation and damage phase fields respectively. The patch is subjected to a
uniaxial tensile strain rate of 0.01 s−1 by prescribing a vertical displacement on the top and bottom boundaries, while keeping the
horizontal displacement on the left boundary fixed, up to a final time of 10 s. The phenomenological crystal plasticity constitutive
model described in Section 2.2.1 for FCC Aluminium with twelve {111} < − 110> slip sytems is used, and the material parameters
are listed in Table 1 (Shanthraj et al., 2015).

The nominal stress-strain curve is shown in Fig. 7. The material is observed to plastically deform at a global yield stress between
55 and 60 MPa up to a nominal strain of 7%, followed by rapid unloading due to crack nucleation and propagation. An enlarged view
of the unloading behaviour (inset in Fig. 7) shows variations in the unloading rates, which corresponds to the variations in the
alignment of the {100} cleavage planes with the loading axis in the different grains. The von Mises stress, pressure and total
accumulated plastic slip, prior to crack nucleation is shown in Fig. 8. Large stresses, with a maximum von Mises stress of 200 MPa
and maximum pressure of 250 MPa correspond to regions of severe plastic deformation, with a maximum plastic strain of 2.0. Grain
boundaries and junctions are most susceptible to damage initiation due to the incompatibility of the plastic deformation modes in
the respective grains forming the junction, which results in large stresses.

Fig. 9 shows the evolution of the damage phase field at different stages of the fracture process. The crack nucleates at the free
surface, where a large gradient in plastic slip leads to necking of the material, and grows into the lower grain along the (1 0 0) plane.
Lattice rotation resulting from large deformations at the advancing crack tip causes a curvature of the crack path as the crack
propagation is constrained to the rotated (1 0 0) plane. In addition to the smooth curvature of the crack path resulting from lattice
rotations, abrupt kinking of the crack path is also observed on encountering jumps in the lattice orientation at the grain boundaries.
These kinking events are correlated with the changes in the unloading rate observed in Fig. 7 (inset), similar in effect to the results in

Fig. 7. Nominal stress-strain curve for the polycrystalline patch subjected to uniaxial tension, with an enlarged view of the unloading behaviour (inset).
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Section 4.1. Fig. 10 shows the corresponding evolution of the von Mises stress at different stages of the fracture process. The
nucleation and growth of a crack is followed by an unloading of the material behind the crack tips and a general redistribution of the
stress field ahead of the crack tip. However, as a result of extensive plastic deformation, a certain amount of residual stress remains
in the unloaded material, and the residual stresses are larger in magnitude along the crack path due to the significant crack tip
plasticity.

Fig. 8. (a) von Mises stress (b) hydrostatic pressure and (c) total accumulated plastic slip in a polycrystalline microstructure loaded to a nominal strain of 7%
immediately prior to crack nucleation.
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5. Conclusions

In the current work, a finite-strain anisotropic PFM is developed to model the localisation of damage on to a pre-defined family of
crystallographic planes, characteristic of cleavage fracture in metals. The approach is based on the introduction of an undamaged
configuration, and the inelastic deformation gradient mapping this configuration to a damaged configuration is microstructurally
represented by the opening of a set of cleavage planes in the three fracture modes. The crack openings are modelled as a dissipative

Fig. 9. Evolution of the damage phase field at different stages of the fracture process in a polycrystalline patch loaded loaded to a nominal strain of 7%. Fully
damaged regions, i.e. φ = 0, are highlighted in black, and the colour scale indicates the in-plane orientation of the deformed lattice, θ( °0°0°). (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.).
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process, and its evolution is thermodynamically derived. To couple this approach with a PFM for brittle fracture, a scalar measure of
the overall local damage is introduced, whose evolution is determined by the crack opening rates, and weakly coupled with the non-
local phase field energy representing the crack opening resistance in the classical sense of Griffith. The anisotropic damage PFM is
discretised by a finite element method and applied to investigate the crack propagation path in a laminate and a polycrystalline
microstructure. The proposed model is able to predict the localisation of damage on to the set of defined cleavage planes, as well as
the kinking and branching of the crack resulting from the crystallographic misorientation across the laminate boundary and grain
boundaries. The proposed method is capable of predicting complex crack patterns resulting from a rich set of interrelated driving
forces, typically observed in the cleavage failure of engineering materials.

Fig. 10. Evolution of the von Mises stress at different stages of the fracture process in a polycrystalline patch loaded to a nominal strain of 7%.
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Appendix A. Notation

As a general scheme of notation, vectors are written as boldface lowercase letters (e.g. a, b), second-order tensors as boldface
capital letters (e.g. A, B), and fourth-order tensors as blackboard-bold capital letters (e.g., ). For vectors and tensors, Cartesian
components are denoted as, respectively, ai, Aij and Aijkl. Second-order tensors are represented in this work as linear mappings
between vectors and are denoted as Ab (in components A bij j, implicit summation over repeated indices is used unless specified
otherwise) and, likewise, fourth-order tensors represent linear mappings between second-order tensors and are designated as B
(A Bijkl kl). The composition of two second-order tensors is denoted as AB (A Bik kj). The tensor (or dyadic) product between two vectors
is denoted as a b⊗ (a bi j). All inner products are indicated by a single dot between the tensorial quantities of the same order, e.g., a b·
(a bi i) for vectors and A B· (A Bij ij) for second-order tensors. The transpose, AT, of a tensor A is denoted by a superscript “T”, and the
inverse, A−1, by a superscript “−1″. Additional notation is introduced where required.

Appendix B. Work conjugate relations

The total stress power, , can be split into elastic, damage and plastic contributions as

FP P F F F P F F F P F F F= · ̇ = ·( ̇ ) + ·( ̇ ) + ·( ̇ )e d p e d p e d p

e d p (48)

The relation between Eṗ and L F F= ̇e e e
−1 is obtained by taking the time derivative of Eq. (14). Under the assumption of small

elastic strains, i.e. F F I≈e
T

e , this relation can be simplified to

E F F L L F Ḟ = 1
2

( + ) .p d
T

e
T

e e
T

e d (49)

Using Eqs. (49) and (15), the elastic stress power term can be expressed in the plastic configuration to establish the work
conjugacy between Sp and Ep

P F F E F F F F F PF E S E= ·( ̇ ) = ( )· ̇ = · ̇e e
−T

d
−T

p d
−1

e
−1

d
−1

e
−1

p
−T

p p p (50)

Work conjugacy between Md and Ld can be established by considering the damage stress power term and using Eq. (14)2

P F L F F F S F L M L F= ·( ) = ( )· = · detd e d d p d p d
T

d d d d (51)

Similarly, considering the plastic stress power, work conjugacy between Mp and Lp can be established

P F F L F F F PF L F F S L M L= ·( ) = ( )· = ( )· = ·p e d p p d
T

e
T

p
T

p d
T

d p p p p (52)
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