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A B S T R A C T   

We present a fully embedded implementation of a full-field crystal plasticity model in an implicit 
finite element (FE) framework, a combination which realizes a multiscale approach for the 
simulation of large strain plastic deformation. At each integration point of the macroscopic FE 
model a spectral solver, based on Fast Fourier Transforms (FFTs), feeds-in the homogenized 
response from an underlying full-field polycrystalline representative volume element (RVE) 
model which is solved by using a crystal plasticity constitutive formulation. Both, a phenome-
nological hardening law and a dislocation density based hardening model, implemented in the 
open source software DAMASK, have been employed to provide the constitutive response at the 
mesoscale. The accuracy of the FE-FFT model has been benchmarked by one-element tests of 
several loading scenarios for an FCC polycrystal including simple tension, simple compression, 
and simple shear. The multiscale model is applied to simulate four application cases, i.e., plane 
strain deformation of an FCC plate, compression of an FCC cylinder, four-point bending of HCP 
bars, and beam bending of a dual-phase steel. The excellent capabilities of the model to predict 
the microstructure evolution at the mesoscale and the mechanical responses at both macroscale 
and mesoscale are demonstrated.   

1. Introduction 

Crystal plasticity (CP) models based on the direct description of the kinematics and kinetics of the discrete and anisotropic 
deformation modes of metallic materials such as dislocation slip and mechanical twining have been successfully applied in predicting 
the mechanical response from the single crystalline up to the industrially relevant component scale (Kalidindi et al., 1992; Van Houtte 
et al., 2005; Roters et al., 2010, 2019; Van Bael et al., 2010; Helm et al., 2011). When simulating the response of parts and processes at 
macroscopic dimensions typically a homogenization approach within the Finite Element Method (FEM) is used rather than the direct 
full-field CP based simulation of a polycrystalline aggregate consisting of a typically prohibitively large number of grains. Three types 
of homogenization schemes are commonly used in such modeling scenarios, namely, full-field homogenization, mean-field homog-
enization, and grain-cluster homogenization (Roters et al., 2010). 

Full-field homogenization refers to the spatially resolved solution of a representative volume element (RVE) by means of FEM (Smit 
et al., 1998; Miehe et al., 1999; Feyel and Chaboche, 2000; Kouznetsova et al., 2001; Kouznetsova et al., 2002; Miehe et al., 2002; 
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Feyel, 2003; Kouznetsova et al., 2004; Kouznetsova and Geers, 2008; Temizer and Wriggers, 2008; Geers et al., 2010; Larsson and 
Runesson, 2011; Temizer and Wriggers, 2011; Coenen et al., 2012; Reis and Andrade Pires, 2013) or spectral methods using a fast 
Fourier transform approach (FFT) (Moulinec and Suquet, 1998; Lebensohn, 2001; Spahn et al., 2014; Kochmann et al., 2016). Such a 
full-field homogenization approach can reach high precision in microstructure-property simulations when using adequate CP 
constitutive models and realistic microstructural morphologies. When compared to experiments, full-field CP simulations were found 
to work particularly well for multi-phase materials with their characteristic high mechanical contrast (Tasan et al., 2014a, 2014b; 
2015; Diehl et al., 2016, 2017). However, among the existing full-field homogenization approaches, most still employ isotropic 
constitutive models to describe heterogeneous materials at the mesoscale rather than a CP model. Though CP models have been used in 
recent studies (Kochmann et al., 2016, 2018a, 2018b), they are limited to the small strain kinematical framework. 

In mean-field homogenization approaches, the microstructure is represented in a statistical way where each grain is considered to 
be homogeneous, thus disregarding realistic microstructural in-grain morphologies and specific local grain interactions. Only spatially 
averaged quantities can be obtained instead of the spatially resolved solutions. Several models were developed along this line. The full 
constrained Taylor (1938) model is based on the iso-strain assumption, and was incorporated in early works, e.g. (Asaro and Nee-
dleman, 1985; Mathur and Dawson, 1989; Kalidindi et al., 1992; Beaudoin et al., 1993; Kalidindi, 1998), as well as in more recent 
works, e.g., (Jung et al., 2013; Zecevic et al., 2015b, a; Ardeljan et al., 2016; Fan et al., 2018; Lu et al., 2019). The viscoplastic 
self-consistent model (VPSC) (Molinari et al., 1987; Lebensohn and Tom�e, 1993) takes into account the long-range interactions of 
grains embedded in a homogeneous effective medium, and was frequently applied in conjunction with FEM (Kaschner et al., 2001; 
Tom�e et al., 2001; Walde and Riedel, 2007b, a; Segurado et al., 2012; Knezevic et al., 2013a; Knezevic et al., 2013b; Gal�an et al., 2014; 
Prakash et al., 2015; Knezevic et al., 2016; Zecevic et al., 2016; Zecevic and Knezevic, 2018). Also, elasto-plastic self-consistent (EPSC) 
(Turner and Tom�e, 1994) models have been implemented in implicit FEM simulations (Zecevic et al., 2017; Zecevic and Knezevic, 
2017, 2019). 

Grain-cluster homogenization is an intermediate approach between the mean-field scheme and the full-field scheme. The degrees of 
freedom are restricted to a small number of regions (which are identified with grains or parts of grains) with homogeneous strain inside 
each zone. Direct neighbor-neighbor interactions among the constituents of a (multiphase) polycrystal are taken into account, so that 
approximate strain compatibility and stress equilibrium are achieved. Models along this line include the Grain Interaction (GIA) 
(Crumbach et al., 2006a, b), the (A)LAMEL (Van Houtte et al., 1999, 2002, 2005; Delannay et al., 2002), the Relaxed Grain Cluster 
(RGC) models (Eisenlohr et al., 2009; Tjahjanto et al., 2009b, a; Roters et al., 2010; Tjahjanto et al., 2015; Roters et al., 2019) and 
Relaxed Constraints Taylor-type models (Raabe, 1995; Raabe et al., 2002; Zhao et al., 2004). 

When utilizing the homogenization schemes outlined above, the CP model is called during each increment of the macroscopic FE 
model and returns the homogenized stress response, which means that the CP model is directly embedded in the FE model. This 
approach is fundamentally different from some of the established hierarchical multiscale schemes (Van Houtte et al., 2006; Van Bael 
et al., 2010; Gawad et al., 2013, 2015; He et al., 2014, 2015; Han et al., 2019). In the latter schemes, the CP model is employed to 
conduct separately virtual experiments for calculating specific elastic-plastic anisotropy data. These stand-alone results are then used 
to identify and/or update parameters of an anisotropic yield surface function at the macroscopic FE level. An update is not necessarily 
requested during each increment of the FE model, instead, the update is done only if a certain criterion is satisfied, e.g. the accumulated 
plastic strain exceeds 0.05 since the last update. Hierarchical schemes are computational less costly while directly embedded models 
are more accurate. 

In this paper, we present a multiscale model by directly embedding a full-field CP-spectral solver in an implicit finite element 
simulation. The implementation of the model is based on ABAQUS implicit (Dassault Syst�emes, 2017) and DAMASK (Roters et al., 
2019). The latter includes a spectral solver using Fast Fourier Transforms (FFTs) (Eisenlohr et al., 2013; Shanthraj et al., 2015; Wong 
et al., 2016; Zhang et al., 2016, 2018; Wang et al., 2018), which is very efficient in dealing with full-field CP problems with periodic 
boundary conditions. As various CP constitutive models have been implemented in DAMASK, all of these formulations are available in 
this multiscale framework. A phenomenological constitutive model and a dislocation density based constitutive model are employed in 
this work to test the new fully integrated multiscale model. Simple tension, simple compression, and simple shear tests are conducted 
to demonstrate the accuracy of the multiscale model (referred to as FE-FFT or ABAQUS-DAMASK) by comparing the results with those 
obtained directly from stand-alone DAMASK simulations. Subsequently, the multiscale model is applied to simulate four application 
cases, i.e. plane strain deformation of an FCC plate, compression of an FCC cylinder, four-point bending of an HCP bar, and beam 
bending of a dual-phase steel. The excellent capabilities of the model to predict microstructure evolution and mechanical response are 
demonstrated. 

2. Finite strain crystal plasticity models and spectral method 

The finite strain framework employed in DAMASK defines a deformation field χðxÞ : x 2 B 0 → y 2 B t, which maps points x in the 
reference configuration B 0 to points y in the current configuration B t. The deformation gradient is given as F ¼ ∂χ=∂x, and its 
multiplicative decomposition reads as F ¼ FeFp. Fp is the plastic deformation gradient that maps to the plastic configuration, and Fe is 
the elastic deformation gradient that maps from the plastic to the deformed configuration. 

2.1. Phenomenological constitutive model 

The phenomenological constitutive model adopted in the present work follows the widely used power law first described by 
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Hutchinson (1976) for FCC crystals and then extended to also account for twinning by Kalidindi (1998). The shear on each slip system 
is described in rate form 
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�
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wheref tot
tw is the total twin volume fraction, _γα

0 is the reference strain rate for slip systems, τα is the resolved shear stress, gα is the slip 
resistance, and m is the strain rate sensitivity exponent. 

Accounting for the unidirectional character of twin formation, the shear on a twin system is handled in a slightly different way by 
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where H is the HEAVISIDE or unit step function. 
The total twin volume fraction is given by 
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where γβ
char is the characteristic shear of twin system β. 

The evolution of the resistance on a slip system is given by 

_gα ¼ hs� s
0

�
1þ c1

�
f tot

tw

�c2
��

1þ hα
int

�XNs

α0 ¼1

�
� _γα0 ��

�
�
�
�1 �

gα0

gα0
∞

�
�
�
�sgn

�

1 �
gα0

gα0
∞

�

hαα0 þ
XNtw

β0 ¼1

_γβ
0

hαβ
0

(4)  

where hαα0 and hαβ
0

are the slip-slip and slip-twin interaction matrices respectively, hs� s
0 , c1, and c2 are fitting parameters, and g∞ is the 

saturation value of the slip resistance. 
The evolution of the resistance on a twin system is given in a similar way by 
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where htw� s
0 , htw� tw

0 , c3, and c4 are fitting parameters. 

2.2. Dislocation density based constitutive model 

The dislocation density-based constitutive model follows the approach proposed by Ma and Roters (2004), which directly describes 
the processes of dislocation multiplication, dislocation annihilation, and dipole formation. 

The shear rate of a slip system is given by the OROWAN equation 

_γ ¼ ρbsv0 exp
�

�
Qs

kBT

�

1 �
���τeff

�
�
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�p�q�

sgnðτÞ (6)  

where ρ is the dislocation density, bs is the length of the Burgers vector, v0 is a reference dislocation velocity, Qs is the activation energy 
for dislocation slip, kB is the BOLTZMANN constant, T is the temperature, τsol is the solid solution strength, p and q are fitting pa-
rameters controlling the strength of the glide resistance profile. τeff is the effective resolved shear stress, which is computed as 

τeff ¼

�
jτj � τpass for τ > τpass
0 for τ � τpass

(7)  

where the dislocation passing stress τpass is given by 

τα
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where G is the shear modulus and ρdi is the dislocation dipole density. 
The evolution of the (unipolar) dislocation density is given by 

_ρ¼ j _γj
bsΛs
�

2d
_
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ρj_γj (9) 
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where Λs is the mean free path for dislocation slip. 
The evolution of the dislocation dipole density is given by 

_ρdi¼
2ðd
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� d
^

Þ
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The dislocation climb velocity is given by 
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where D0 is the pre-factor of the self-diffusion coefficient, Vcl is the activation volume for dislocation climb, and Qcl is the activation 
energy for climb. 

Two dislocations will annihilate if the glide plane distance is smaller than the value d
^

, which is calculated as 

d
^

¼ Dabs (12)  

where Da is a fitting parameter. 

They will form a stable dipole if the glide plane distance is larger than d
^

but not larger than the value d
_

, which is calculated as 

d
_

¼
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The mean free path for dislocation slip, Λs, has confining contributions due to the pileup of dislocations in front of grain boundaries 
and the dislocation-dislocation interaction, which is given by 
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where D is the average grain size, is is a fitting parameter, and ξαα0 are projections for the forest dislocation density as introduced in (Ma 
and Roters, 2004). 

2.3. Spectral method 

The spectral method using the Fast FOURIER Transform (FFT) method to solve micromechanical boundary condition problems of 
heterogeneous materials usually exhibits a higher efficiency than the finite element method (FEM). 

Considering a hexahedral microstructural domain B 0⊂ℝ3 on which a macroscopic deformation gradient F is imposed, the 
deformation map χðxÞ can be expressed as a sum of F and a superimposed deformation fluctuation field ~w, 

χðxÞ¼Fxþ ~wðxÞ (15)  

for which periodic boundary conditions hold, i.e. ~w� ¼ ~wþ on corresponding surfaces ∂B � and ∂B þ. Following Eq. (15), the total 
deformation gradient F is given by 

F¼Fþ ~F (16) 

The first PIOLA-KIRCHHOFF stress is expressed through a strain energy density functional W : 

PðxÞ ¼
δW

δF
ðx;F; ζ;…Þ (17)  

where ζ is a set of evolving internal variables. 
For an externally imposed average deformation, the equilibrium deformation field is obtained by minimizing W over all defor-

mation fields that fulfill Eq. (15). Static equilibrium expressed in real and FOURIER space follows 

min
x

W ⇒ DivPðxÞ ¼ F
� 1½PðkÞ i k � ¼ 0 (18)  

which is equivalent to finding the root of the residual body force field 

F ½χðkÞ � :¼ PðkÞ i k ¼ 0 (19) 

Due to its high condition number, the differential Eq. (19) in FOURIER space is numerically difficult to solve. To tackle this 
problem, a linear homogeneous reference material of linear stiffness D is introduced, which transforms Eq. (19) into an equivalent 
problem (i.e. PðxÞ ¼DFðxÞ ¼DGradχ) with better numerical properties. For a given deformation map χ, equilibrium in this reference 
material is fulfilled if the residual body force field vanishes 
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Fig. 1. Flow chart of the stages of the multiscale model embedding the spectral solver in FEM.  

Fig. 2. (a) Representative volume element colored according to the inverse pole figure (IPF) along Z-direction (b) random texture assigned to the 
RVE (only one pole per orientation shown). 

Table 1 
Constitutive parameters used for the dislocation density based modeling of pure aluminum.  

Symbol Description Value Unit 

C11 Elastic constant 106.75 GPa 
C12 60.41 GPa 
C44 28.34 GPa 
bs Burgers vector length 0.286 nm 
ρdi Initial dipole density 1.0 m� 2 

ρ Initial dislocation density 8.89⋅1011 m� 2 

Qs Activation energy for slip 3.0⋅10� 19 J 
v0 Reference dislocation velocity 10–4 m⋅s� 1 

τsol Solid solution strength 5.07 MPa 
p, q Parameters for controlling the obstacle profile 1.0  
Qcl Activation energy for climb 2.4⋅10� 19 J 
Vcl Activation volume for climb 1.0(bs)3 s m3 

is Fitting parameter 4.38  
Da Fitting parameter 29   
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P ½χðkÞ � :¼ D½χðkÞ � i k � i k ¼ AðkÞχðkÞ ¼ 0 (20) 

The acoustic tensor A(k) corresponds to an operator on a deformation map producing the body forces resulting in the reference 
material. It is defined as AðkÞaðkÞ :¼ D½aðkÞ � i k � i k for any given vector field a(k). The inverse operator A� 1 gives the deformation 
map that would result from a known body force field in the reference material. Thus it allows defining an operator that results in the 
deformation map causing the same body force field in the reference material as a given deformation map in the original material, 
which corresponds to a preconditioning operation of P � 1 on the non-linear operator F . The preconditioned system thus reads (8k 6¼
0): 

P
� 1

F ½χðkÞ � ¼ AðkÞ� 1PðkÞ i k ¼ 0 (21) 

The deformation gradient field corresponding to this deformation map is obtained as 

Fig. 3. One-element tests for (a) simple tension (b) simple compression (c) simple shear, showing the shapes of the single elements and the 
embedded RVE after deformation. The RVEs are colored according to the IPF along the reference Z-direction. 
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P
� 1

F ½χðkÞ � � i k ¼
h
AðkÞ� 1PðkÞ i k

i
� i k ¼ 0 (22)  

which is equivalent to Eq. (21) except for the case of k ¼ 0 where the prescribed average deformation gradient always holds. Eq. (22) 
can be expressed in FOURIER space in terms of the deformation gradient field as 

F mech½FðkÞ � :¼ ΓðkÞPðkÞ ¼ 0 (23)  

where the Gamma operator ΓðkÞ is defined as a shorthand notation to ΓðkÞTðkÞ :¼ ½AðkÞ� 1TðkÞ i k� � i k for a tensor field TðkÞ. Eq. (23) 
is discretized by a collocation-based approach at the FOURIER points in the real space and it results in the system of equations 

F basic½FðxÞ � :¼ F
� 1
��

ΓðkÞPðkÞ for k 6¼ 0
ΔF for k ¼ 0

�

(24) 

Fig. 4. Stress-strain curve and pole figure predictions of the multiscale model compared to the corresponding predictions obtained from a stand- 
alone (SA-) DAMASK simulation for (a) simple tension (b) simple compression (c) simple shear. Red circles in the pole figures represent the ori-
entations predicted by the multiscale model while the blue ones represent those predicted by the stand-alone DAMASK simulation. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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3. Partitioning and homogenization 

Fig. 1 shows a flow chart of the individual stages of the multiscale model and the workflow among them. At the macroscale, the FE 
model determines the evolution of the deformation gradient. A partitioning scheme is used to impose the deformation gradient on the 
RVE of the full-field CP model at the mesoscale. In the present approach, Eq. (15) reflects this scheme. This means that the deformation 
gradient from the FE integration point is passed to the RVE of DAMASK as the homogeneous part F. Following the full-field solution of 
the CP constitutive model using the spectral solver, simple volume averaging is used to obtain the average stress response, knowing the 
distribution of the microscopic stress field. The implicit FE code requires not only the input of the stress at the end of the time step but 
also the tangent stiffness matrix (Jacobian). As the spectral solver employed in the mesoscale uses fully implicit time stepping the local 
stiffness matrix is known. Thus the tangent stiffness matrix of the RVE can be directly retrieved by volume averaging. 

It needs to be noted that in the standard version of DAMASK the stress field is explicitly given as a first PIOLA-KIRCHHOFF stress 
measure P, and a transformation to the Cauchy stress measure σ, as required by ABAQUS, can be achieved by applying σ ¼
ðdetFÞ� 1PFT. A transformation from the DAMASK tangent dP=dF to the tangent matrix appropriate to the Jaumann rate of Cauchy 
stress has also to be done (see Appendix B for details). 

4. Benchmark tests 

The correctness of the implementation and accuracy of the multiscale model are first checked by comparing the results of the 
multiscale model (ABAQUS-DAMASK) against the results of the stand-alone DAMASK model in cases of simple boundary conditions. 
For the multiscale model, a simple FE model with a single linear element C3D8R is used, and a representative volume element (RVE) is 
embedded in the integration point. This procedure is referred to as single material point test. 

The material used here is pure aluminum with random crystallographic texture. Fig. 2(a) shows the RVE which consists of 
10 � 10 � 10 FOURIER points. Each FOURIER point represents one grain, and the grain orientations are shown in the pole figure in 
Fig. 2(b). It needs to be noted that the pole figure just shows one dot per pole per grain. We decided to do so, as in the following, we are 
going to compare the crystallographic textures (represented as sets of individual grain orientations) predicted by the multiscale model 
with those obtained by the stand-alone DAMASK model in a pole figure on a one-to-one basis. In this case, the chosen representation 
limits the number of poles shown in the pole figures for better clarity. The dislocation density based constitutive model (section 2.2) is 
employed in the benchmark tests. The parameters of the constitutive model have been identified by using a genetic algorithm (Lin and 
Yang, 1999) based on an inverse optimization approach to reproduce the experimental single crystal tensile stress-strain behavior of 
aluminum (Hosford et al., 1960). The identified parameters for pure aluminum are listed in Table 1. 

Fig. 5. ABAQUS-DAMASK simulation of plane strain deformation of pure Al with a round rigid die. Distributions of (a) maximum principal strain 
(b) shear strain component LE13. 
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The shapes of the elements and the embedded RVEs after simple tension, simple compression, and simple shear are shown in Fig. 3 
(a–c), respectively. In all three load cases, the embedded RVE deforms according to the boundary condition imposed by the single 
element of the macroscale FE model. The changes of the grain orientations at the mesoscale can be identified in terms of the color 
changes of the RVEs. 

The stress-strain curves and pole figures predicted by the multiscale model are compared with those predicted by the stand-alone 
DAMASK for the three load cases in Fig. 4. Hardly any loss of accuracy can be observed regarding the prediction of the stress-strain 
response and the texture, indicating a very high accuracy of the implemented multiscale model. 

5. Application examples 

5.1. Plane strain deformation of a pure Al plate 

Plane strain deformation of a pure Al plate with a round rigid die was simulated to further illustrate the capabilities of the mul-
tiscale model in complex deformation conditions. The initial size of the plate is 3 � 1 mm in the x-z plane. The mesh contains 100 
C3D8R linear elements. A displacement of � 0.5 mm in z-direction was imposed to the round die at a constant tool velocity of 5 mm s� 1 

to compress the plate. The friction coefficient is set to 0.3. The dislocation density based constitutive model as calibrated in section 4 is 
also employed in this simulation. Fig. 5 shows the final geometry and the strain distribution of the plate. A heterogeneous strain pattern 
ranging between 0.157 and 0.628 maximum principal strain evolves in the region under the contact surface. Large shear strains (with a 
maximum value of 0.479) occur in the region near the contact surface. Fig. 6 shows the distribution of the Von Mises stress, together 
with the final shapes of the embedded RVEs and corresponding textures at the six positions indicated. The shapes of the elements at 
these positions are consistent with those of the embedded RVEs. The three positions (P4, P5, and P6) located at the bottom of the plate 

Fig. 6. ABAQUS-DAMASK simulation of plane strain compression of pure Al: Distribution of the Von Mises stress shown in the x-z plane, together 
with the final shapes of the embedded RVEs and corresponding crystallographic textures shown as pole figures projected in the x-y planes at the six 
positions indicated. 
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are in a nearly pure plane strain compression state, so that the elements and the embedded RVEs are just in a simple compression 
configuration as well. The other three positions (P1, P2, and P3) located in the region near the contact surface are in more complex 
deformation states including compression, shear, and rotation, so that the elements and the embedded RVEs at these positions are in 
more complex configurations as well. As a consequence of the different deformation histories in the region near the contact surface and 
the bottom region of the plate, the final textures in the two regions are distinctly different. Typical plane strain compression textures 
for FCC material (H€olscher et al., 1994; Raabe, 1995; Raabe et al., 2002) are found at the three positions (P4, P5, and P6) located at the 
bottom of the plate, as can be observed from the <111> pole figures. The highest texture intensity appears at position P4 where the 
largest compression strain is found. The textures at the positions near the contact surface (P1, P2, and P3) exhibit rotations with respect 
to the y-axis, which is a result of the complex deformation history. Evidently, all the results at the mesoscale are consistent with the 
results at the macroscale. 

5.2. Compression of a pure Al cylinder 

Next we study a more complex setup to consider microstructural statistics and heterogeneity at the macroscale. Fig. 7 shows a 
quarter FE model of a cylinder with different RVEs assigned at each integration point. The cylinder has a diameter of 1 mm and a height 
of 1 mm, discretized into a mesh with 192 C3D8R elements. For the upper half of the cylinder, the RVEs contain 100 grains, while the 
RVEs just contain 10 grains in the same dimension for the lower half of the cylinder. In other words, the upper half has a fine-grained 
microstructure while the lower half has a coarse-grained microstructure with the aim to mimic the effect of grain size heterogeneity. 
The Voronoi tessellation method is used to generate the geometries of the RVEs. The seeds of the Voronoi tessellation are randomly 
generated, and so are the grain orientations. In this way, each integration point of the macroscale FE model has an individual RVE so 
that the whole cylinder has sufficient statistical characteristics of the microstructure. Each RVE consists of a grid of 10 � 10 � 10 
points. The dislocation density based constitutive model is again used in this simulation. 

Fig. 7. FE model of a cylinder with different RVEs assigned at each integration point. The upper half of the cylinder assigned with fine-grained RVEs 
while the lower half assigned with coarse-grained RVEs. The RVEs are colored according to the IPF along Z-direction. 
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The cylinder was compressed to 75% of its original height imposing a tool velocity of 0.1 mm s� 1. Fig. 8 depicts the Von Mises stress 
distribution of the deformed cylinder and that of the embedded RVEs at eight positions. Although the boundary conditions of the upper 
half and the lower half of the cylinder are symmetrical, the stress distribution in the cylinder is obviously asymmetrical. This can be 
ascribed to the use of individual RVEs for each integration point and the grain size heterogeneity of the upper and lower half of the 
cylinder. The stress distributions of the RVEs that result from grain-scale interactions are different from each other. The stress levels 
and the shapes of the eight embedded RVEs are consistent with those of the corresponding macroscale elements. 

This example indicates that the present multiscale model is able to capture sufficient statistical information of the microstructure by 
employing multiple RVEs. In particular, it should be very effective to describe materials with large microstructure heterogeneity, such 
as sheet metals with texture gradients across the thickness direction (Tikhovskiy et al., 2006, 2008), materials with grain size gra-
dients, and microstructures of welded joint. 

5.3. Four-point bending of Zr bars 

Two simulations of four-point bending of textured Zr bars were performed to evaluate the capability of the multiscale model to 
predict the directionality of twinning. To perform the four-point bending experiments (Kaschner et al., 2001; Tom�e et al., 2001), 2 bars 
of square cross-section were cut from a clock-rolled Zr plate, then they were bent along different directions. In one case, the 
through-thickness direction (of the original plate) lies in the bending plane, i.e., the <c>-axes are mostly aligned in the bending plane, 
while in the other case, the through-thickness direction is perpendicular to the bending plane, i.e., the <c>-axes are mostly aligned 
perpendicular to the bending plane. The simulations follow the same settings as the experiments. 

The phenomenological crystal plasticity constitutive model accounting for twinning (section 2.1) is employed. The slip and 
twinning modes consist of f1010gh1210i prismatic <a>, f0001gh1120i basal <a>, f1011gh1123i pyramidal <cþa>, f1012gh1011i
tensile twinning and f1122gh1123i compressive twinning. An RVE of 1000 grains (with the resolution of 10 � 10 � 10 FOURIER 
points) assigned with a texture sampled from the experimental texture (Kaschner et al., 2001; Tom�e et al., 2001) was created to 
represent the material. Fig. 9 shows both, the experimentally observed texture and the corresponding texture reconstructed from the 
1000 discrete orientations that had been assigned to the RVE. The hardening parameters were again identified by the genetic algorithm 
based inverse optimization approach to reproduce the experimental stress-strain curves of uniaxial in-plane tension, uniaxial in-plane 

Fig. 8. ABAQUS-DAMASK simulation of the compression of an Al cylinder with heterogeneous microstrcture: Von Mises stress distribution of the 
deformed cylinder and that of the embedded RVEs at eight positions. The colorbar at the top is for the RVEs while that at the bottom is for the 
FE model. 
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Fig. 9. Initial texture of Zr (a) experimental (Kaschner et al., 2001; Tom�e et al., 2001) (b) reconstructed from 1000 discrete orientations that were 
assigned to the RVE. 

Fig. 10. Comparisons of experimental (—) and fitted (——) stress-strain curves of Zr. The experimental data were taken from the work of (Tom�e 
et al., 2001). 
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compression and through-thickness compression of Zr as shown in Fig. 10. The parameters identified are listed in Table 2. It needs to be 
noted that the parameters were first optimized by fitting to the stress-strain curve of uniaxial in-plane compression to obtain a pre-
liminary fit, then they were further optimized by fitting to all three curves in parallel. The stress-strain response reproduced by the fit 
has 18.2% deviation to the experimental values. Even though the fitting is not optimal it is considered sufficient for the purpose of this 
work, i.e. demonstrating the capabilities of the multiscale approach rather than validating the constitutive models used. 

The four-point bending was conducted on a rectangular bar with initial dimensions 6.35 � 6.35 � 50.8 mm. Due to the orthotropic 
symmetry of the problem, only a quarter of the problem is modeled and symmetry boundary conditions are imposed. The bar was 
discretized using 288 reduced integration hexahedral elements (C3D8R). The upper pins and the lower pins were located at 6.35 mm 
and 19.05 mm from the midpoint, respectively. During bending, the lower pins were fixed while the upper pins were displaced 6 mm 
downward. 

Fig. 11 shows the final shapes of the bars after four-point bending in the lateral and 3D views. Though the lateral views for the two 
cases are very similar to each other, differences can be observed from the 3D views as well as from the longitudinal strain distributions. 
From the 3D views, it can be seen that the lateral section of the bar with the through-thickness direction lying on the bending plane is 
more warped than that of the bar with the through-thickness direction perpendicular to the bending plane. This can be also observed 
more clearly from Fig. 12 which shows the simulated cross sections of the Zr bars after four-point bending together with the exper-
imental ones (Kaschner et al., 2001). Since the through-thickness direction of the highly textured Zr bar is hard to deform, the plastic 
flow of the bar during deformation has strong directionality. When the through-thickness direction is aligned in the bending plane, the 
plastic deformation is localized in the x-y plane, resulting in a wedge-shaped cross section. When it is aligned perpendicular to the 
bending plane, the plastic flow in the x-y plane is limited, so the cross section keeps a more square shape. It can be also observed that 
the simulations are in good agreement with the experiments. 

Table 2 
Constitutive parameters used for the phenomenological constitutive law to model Zr.  

Symbol Description Value Unit 

gpri
0  

Initial slip resistance of Prismatic <a> 13 MPa 

gpri
0  

Initial slip resistance of basal <a> 32 MPa 

gpyr
0  Initial slip resistance of pyramidal <cþa> 345 MPa 

gpri
∞  Saturation slip resistance of Prismatic <a> 76 MPa 

gbas
∞  Saturation slip resistance of basal <a> 115 MPa 

gpyr
∞  Saturation slip resistance of pyramidal <cþa> 2134 MPa 

gT
tw;0  Initial tensile twinning resistance 90 MPa 

gC
tw;0  Initial compressive twinning resistance 531 MPa 

hs� s
0  Fitting parameter 718 MPa 

htw� tw
0  Fitting parameter 3297 MPa 

htw� s
0  Fitting parameter 3857 MPa 

m Strain rate sensitivity exponent 0.1   

Fig. 11. Final shapes of the textured Zr bars after four-point bending (a) the through-thickness direction lies on the bending plane (b) the through- 
thickness direction is perpendicular to the bending plane. 
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5.4. Beam bending of a dual-phase steel 

To further demonstrate the ability of the multiscale model in simulations of materials with complex microstructure, a beam bending 
process was simulated, in which a high resolution dual-phase RVE was embedded in each FE integration point. Fig. 13(a) shows the 
mesh and the boundary conditions of the beam. The beam has a dimension of 1 � 3 � 7 mm, and it was discretized using 21 C3D8R 
elements. During bending, one end of the beam was fixed, while two nodes of the other end were displaced by 1 mm downward. Here 
we aim to demonstrate the capabilities of the integrated RVE-FEM model approach for the case of a two phase material, hence we chose 
a ferritic-martensitic dual phase steel here (Tasan et al., 2015). Fig. 13(b) and (c) show the RVE with 100 grains (80 ferrite grains and 
20 martensite grains) for the dual phase steel (Tasan et al., 2014a). The RVE has a high grid resolution of 64 � 64 � 64 points. It needs 
to be noted that the RVE has been created here for demonstration purposes, but the grain size ratio between ferrite and martensite may 
be not realistic. The phenomenological power law included in the DAMASK distribution is used here. The parameters for ferrite and 
martensite phase used in the simulation can be found in (Tasan et al., 2014b). 

Fig. 14 shows the Von Mises stress distribution of the beam after bending, together with the Von Mises stress and strain distributions 
of the embedded RVEs at two positions as indicated in the figure. Due to the complex boundary and loading conditions imposed, the 
stress distribution of the beam is non-uniform. The highest stress (563 MPa) appears at position P1. From the stress distribution of the 
embedded RVE at this position it can be seen that the distribution in the magnitude of the micromechanical stresses is much wider than 
typically observed at the macroscale. As expected, the martensite regions are carrying much higher stresses than the soft ferrite grains, 
caused by the strong microstructural stress partitioning between the two zones. Correspondingly the strain distribution of the 
embedded RVE reveals that the ferrite grains carry most of the micromechanical deformation, and banded zones with high strain 
localization appear in the ferrite regions near to the martensite grains. As a comparison to the RVE embedded at position P1, the RVE 
embedded at position P2 has similar strain and stress distributions while their magnitudes are much lower. 

This example shows a main advantage of employing a full-field CP model in the multiscale framework. It reveals that detailed 
microstructure-scale effects such as stress and strain partitioning between hard and soft regions can be well captured as well as their 
homogenized response at the macro scale. Based on the present framework, it is also possible to integrate damage models at both, the 
mesoscale constitutive formulation and at the macroscale in future so that failure of components can be modeled starting from 
microstructurally small cracks up to macroscopic fracture. As damage nucleation and crack growth depend substantially on micro-
structure, the current full-field model is a very well suited approach to reflect the influence of microstructural on micromechanics and 

Fig. 12. Cross sections of the Zr bars after four-point bending (a) through-thickness direction lies on the bending plane (b) through-thickness 
direction is perpendicular to the bending plane to the bending plane. The left hand side images show the simulated results and the right hand 
side images show the experimental results. The experimental data were taken from the work of (Kaschner et al., 2001). 

F. Han et al.                                                                                                                                                                                                            



International Journal of Plasticity 125 (2020) 97–117

111

damage evolution of materials with complex microstructures and/or high micromechanical contrast among adjacent regions. 

5.5. Convergence 

In the present model, the tangent stiffness matrix required by the implicit finite element is directly retrieved from the spectral- 
solution of the RVE by volume averaging. To study the order of convergence, three simulation cases were performed and the 
convergence behaviors were evaluated. In the first case, the macroscopic FE model just contains one cube element and an RVE of 1000 
grains with the grid resolution of 10 � 10 � 10 was embedded at the integration point. In the second case, the macroscopic FE model 
still contains one element while the embedded RVE was replaced by a high resolution RVE of 100 grains with a grid resolution of 
64 � 64 � 64. In the third case, the macroscopic FE model contains 64 (4 � 4 � 4) elements while the embedded RVE is again the low 
resolution RVE. Identical boundary conditions were imposed on the three FE models, i.e. the cubes (1 � 1 � 1 mm) were all uniaxially 
stretched in z-direction to the amount of 4% with a velocity of 0.001 mm s� 1. The fixed increment type boundary condition as 
implemented in ABAQUS was adopted. The number of increments was set to 20, which means that the simulations will be completed 
after 20 increments, each imposed at constant increment step size. For each increment, the strain step imposed in the FE simulation is 
~0.002. 

Table 3 lists the number of iterations at each increment for the three simulation cases. When the FE model contains one element 
only and an embedded RVE with grid resolution 10 � 10 � 10 has been chosen, the first increment requires the most iterations 
compared to the other increments, as the elastic-plastic transition stage is characterized by a high nonlinearity. When the simulation is 
in a steady deformation stage (i.e. after 3 increments), a smaller number of iteration steps per deformation increment is required. In the 
second case, where the embedded RVE has 64 � 64 � 64 grid resolution, both the first and second increments require each 10 iter-
ations, a number much higher than that in the first simulation case. This observation shows that it is more difficult to converge in 
response regimes of high nonlinearity for a high resolution RVE. Only 1 or 2 iterations are needed in the steady deformation stage, 
which is comparable to the first case. In the third case where the FE model contains 64 elements, the numbers of iterations required for 
both the initial elastic-plastic transition stage and the steady deformation stage are higher than those in the case where the FE model 
only contains one element. This result reveals that it is obviously more difficult to converge for FE models with an increasing number of 
elements. Despite this, a decreasing tendency in the number of iterations required can still be observed. 

Fig. 15 depicts the errors versus the corresponding iterations as well as the order of convergence for the selected increments for all 
three simulation scenarios. The error at each iteration step is defined as the norm of the difference between the sought strain increment 

Fig. 13. (a) FEM model used for a beam bending simulation. (b) Artificial dual phase RVE microstructure with a grid resolution of 64 � 64 � 64, 
color coded according to the IPF scheme along the Z-direction. (c) Same RVE with the ferrite colored in blue and the martensite colored in red. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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and the current guess of the strain increment. Here the sought strain increment is considered to be the finally converged one. The order 
of convergence is estimated following the method described in (Zecevic et al., 2017). It can be seen that it has an order of only ~0.7 for 
two cases, while a linear convergence is achieved for the other cases investigated. The convergence speed is acceptable in the present 
work, and finding a better expression of the tangent stiffness matrix for full-field homogenization to improve the order of convergence 
remains to be pursued in future work. 

6. Conclusions 

In this paper we present a physics- and mechanism-based multiscale model for polycrystal mechanics by embedding a full-field 
crystal plasticity model in an implicit FE framework. The spectral solver based on a FFT solution method as included in the free 
modeling package DAMASK is employed to provide a full-field solution for the crystal plasticity boundary condition problem according 
to the constraints prescribed at every forming instant by the mesoscale FE model. Simple volume averaging is used to provide the stress 
response and the stiffness matrix of the embedded RVE to each integration point of the macroscale FE model. The FE-FFT model was 
validated by reproducing the results of the stand-alone DAMASK model applied to cases of simple tension, simple compression, and 
simple shear on an FCC polycrystal. Four illustrative examples were presented to show the capabilities of the model in practical 
application. In the first example, the multiscale model successfully captures the strain heterogeneity of an FCC plate compressed by a 
round rigid die, as well as the deformed microstructures represented by the shapes of the embedded RVEs and corresponding textures. 
In the second example, the multiscale model successfully captures the stress distribution asymmetry of a compressed cylinder by 
employing multiple statistical and different grain-sized RVEs. In the third example, the multiscale model successfully captures the 
geometrical changes of highly textured HCP bars in four-point bending tests with the through-thickness directions (of the original plate 

Fig. 14. Fully integrated ABAQUS-DAMASK simulation of beam bending with high lattice resolution for a dual-phase steel RVE: Distribution of the 
Von Mises stress, together with the Von Mises stress and Von Mises strain distributions of the embedded RVEs at the two positions indicated. 
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that the bars were cut from) orientated in the bending plane or perpendicular to that. In the fourth example, a beam bending simulation 
of a dual-phase steel, represented in terms of a high resolution RVE, successfully captures the stress and strain partitioning among 
ferrite and martensite as well as their homogenized response when analyzed for the macroscale boundary conditions. 

Both a phenomenological hardening law and a dislocation density based model implemented in DAMASK have been used to 
provide the constitutive response at the mesoscale. As the present multiscale modeling framework is formulated very general, other 
advanced CP constitutive formulations implemented in DAMASK can also be used. The present model is particularly suitable for 
modeling materials that need to take into account complex microstructural characteristics (e.g., multiple phases, grain morphology, 
textures and grain size distributions), since such characteristics can only be well defined in a full-field model. It needs to be noted that 
the present multiscale framework is not only suitable for the simulation of the mechanical response of polycrystalline materials but 

Table 3 
Number of iterations at each increment.  

Increment number Number of iterations 

1 element 64 elements 

1000grains10 � 10 � 10 100grains64 � 64 � 64 1000grains10 � 10 � 10 

1 4 10 10 
2 3 10 10 
3 3 4 6 
4 2 2 8 
5 1 2 9 
6 1 1 9 
7 2 1 7 
8 2 1 7 
9 2 1 8 
10 2 1 8 
11 2 1 7 
12 2 1 5 
13 2 1 4 
14 2 1 2 
15 2 1 2 
16 1 1 3 
17 1 1 3 
18 1 2 3 
19 1 1 4 
20 1 1 5  

Fig. 15. Error versus number of iterations. 1element-RVE10-inc1: the 1st increment of the one-element FE simulation in which the embedded RVE 
has a grid resolution of 10 � 10 � 10; 1element-RVE64-inc1: the 1st increment of the one-element FE simulation in which the embedded RVE has a 
grid resolution of 64 � 64 � 64; 64element-RVE10-inc1: the 1st increment of the 64-element FE simulation in which the embedded RVE has a grid 
resolution of 10 � 10 � 10; 64element-RVE10-inc10: the 10th increment of the 64-element FE simulation in which the embedded RVE has a grid 
resolution of 10 � 10 � 10; 64element-RVE10-inc20: the 20th increment of the 64-element FE simulation in which the embedded RVE has a grid 
resolution of 10 � 10 � 10. Y-axes is in logarithmic scale. 
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also for materials that have hierarchical or graded microstructures, as long as the underlying materials can be represented in a 
DAMASK RVE. 
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Appendix A. Notation 

The tensor (or dyadic) product between two vectors is denoted as T ¼ a� b (Tij ¼ aibj). The action of a second-order tensor upon a 
vector is denoted as t ¼Ab (in components ti ¼Aijbj) and that of a fourth-order tensor upon a second-order tensor is designated as T ¼
A:B (Tij ¼AijklBkl). The composition of 2 s-order tensors is denoted as T ¼AB (Tij ¼AikBkj). The tensor product A ⊠ B of 2 s-order 
tensors A and B is defined by (A ⊠ B)C: ¼ACB (Tijkl ¼Aij ⊠ Bklsuch that TijklCkl ¼AimCmnBnj). The transpose tensor product 
A ⊞ BA ⊞ B of 2 s-order tensors A and B is defined by ðA ⊞ BÞC :¼ ACTB (Tijkl ¼ Aij ⊞ Bkl such that TijklCkl ¼AimCnmBnj). The dyadic 
product of 2 s-order tensors is denoted as T¼ A� B (Tijkl ¼AijBkl). 

Appendix B. Calculation of tangent matrix 

The expression for the tangent matrix appropriate to the Jaumann rate of Cauchy stress is given as 

Cumat
ijkl ¼ J� 1� FjmFlnCdamask

imkn � FimPkmδjl
�
þ

1
2
�
σjlδik þ σikδjlþ σjkδilþ σilδjk

�
(A1)  

where J ¼ det F and δjl is the Kronecker delta. The tangent modulus Cdamask ¼ dP=dF used in DAMASK is analytically derived. The first 
PIOLA-KIRCHHOFF stress P is related to the second PIOLA-KIRCHHOFF stress S through 

P¼FeSF� T
p ¼ FF� 1

p SF� T
p (A2) 

Therefore, the sought tangent is given as 

dP
dF
¼
h
I ⊠

�
F� 1

p SF� T
p

�i
: Iþ

h
F ⊠

�
SF� T

p

�i
:

dF� 1
p

dF
þ
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FF� 1
p

�
⊠ F� T

p

i
:

dS
dF
þ
h�

FF� 1
p S
�

⊠ I
i

:
dF� 1

p

dF
(A3) 

Using the chain-rule, dS =dF can be expressed as 

dS
dF
¼

dS
dFe

:
dFe

dF
(A4)  

where dS =dFe is given later. dFe =dF is expressed as 

dFe

dF
¼ I ⊠ F� 1

p þ ½F ⊠ I� :
dF� 1

p

dF
(A5) 

Considering that the time integral of the velocity gradients is approximated in an implicit manner at a fixed material state as 

FpðtÞ � Fpðt0Þ

Δt
¼ LpðtÞFpðtÞ (A6)  

which results in the plastic deformation gradient at the end of the time increment being 

FpðtÞ ¼
�
I � ΔtLpðtÞ

�� 1Fpðt0Þ (A7)  

from which the differential of the inverse components can be obtained as 

dF� 1
p

dF
¼ � Δt

h
F� 1

p0 ⊠ I
i

:
dLp

dS
:

dS
dF

(A8)  

where dLp =dS is given later. By substituting Eq. (A8) into Eq. (A5) and then Eq. (A5) into Eq. (A4) it yields 
�

Iþ Δt
dS
dFe

:
�

FF� 1
p0

�
⊠ I :

dLp

dS

�

:
dS
dF
¼

dS
dFe

:
h
I ⊠ F� 1

p

i
(A9)  

which is solved for dS =dF and used together with Eq. (A8) to evaluate Eq. (A3). 
The second PIOLA-KIRCHHOFF stress S is expressed as a function of its work conjugate GREEN-LAGRANGE strain E in the plastic 

configuration. Therefore its derivate is given by: 

F. Han et al.                                                                                                                                                                                                            



International Journal of Plasticity 125 (2020) 97–117

115

dS
dFe
¼

dS
dE

:
dE
dFe

(A10) 

where 

dE
dFe
¼

1
2
�
FT

e ⊠ Iþ I ⊞ Fe
�

(A11) 

The derivative of the plastic velocity gradient Lp is expressed as 

dLp

dS
¼ Lp;S ¼

X

α
Lα

p;S (A12)  

where the individual derivatives can be obtained as follows: 

Lα
p;S ¼

�

_γαsα � nα
�

;S  

¼ ðsα � nαÞ � _γα
;S  

¼
∂ _γα

∂τα ¼ ðs
α � nαÞ � τα

;S  

¼
∂ _γα

∂τα ¼ ðs
α � nαÞ � ððsα � nαÞ �S Þ;S  

¼
∂ _γα

∂τα ðs
α � nαÞ � ðsα � nαÞ (A13)  
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