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Abstract

We present a numerical study on the influence of crystallographic texture on the earing behavior of a low carbon

steel during cup drawing. The simulations are conducted by using the texture component crystal plasticity finite element

method which accounts for the full elastic–plastic anisotropy of the material and for the explicit incorporation of tex-

ture including texture update. Several important texture components that typically occur in commercial steel sheets

were selected for the study. By assigning different spherical scatter widths to them the resulting ear profiles were calcu-

lated under consideration of texture evolution. The study reveals that 8, 6, or 4 ears can evolve during cup drawing

depending on the starting texture. An increasing number of ears reduces the absolute ear height. The effect of the ori-

entation scatter width (texture sharpness) on the sharpness of the ear profiles was also studied. It was observed that an

increase in the orientation scatter of certain texture components entails a drop in ear sharpness while for others the

effect is opposite.
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1. Introduction

1.1. Integration of plastic anisotropy into metal

forming simulations

The shape anisotropy of cup drawn metallic

parts is referred to as earing. It is a characteristic

phenomenon associated with the crystallographic
ed.
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texture and the resulting elastic–plastic anisotropy

of metals [1–16]. Sheet steels usually have pro-

nounced textures which they inherit from the pre-

ceding processing steps such as hot rolling, cold

rolling, and heat treatment [17–23].
Various concepts exist to introduce texture-

related sheet anisotropy into finite element models

for sheet forming. The initial material anisotropy

existing before sheet deformation can be incorpo-

rated either through an anisotropic yield surface

function or directly via the incorporation of crys-

tallographic texture models into the finite element

codes. The anisotropic yield surface models can be
classified into two groups. The first one comprises

empirical and phenomenological anisotropic yield

surface equations, such as the equations of Hill

from 1948 [24] and 1979 [25], Hosford [26], Barlat

[27], or Barlat and Lian [28] to name but a few

important ones. These yield surface functions are

formulated as convex higher-order polynoms, i.e.

they take an empirical view at plastic anisotropy.
The physical nature of anisotropy can be incorpo-

rated into these concepts for instance by fitting

the corresponding polynomial coefficients with

the aid of texture-based strain-rate or self-consis-

tent homogenization methods or with anisotr-

opy parameters obtained from mechanical tests.

A detailed overview of this class of yield surface

concepts was recently given by Banabic et al.
[29]. The second type of yield surface models is di-

rectly formulated as texture-based yield loci [30–

34] the coefficients of which can be directly ex-

pressed in terms of the texture-based mechanical

models in conjunction with experimentally deter-

mined orientation distributions.

The advantage of yield surface concepts for

mechanical anisotropy predictions are relatively
short calculation times, when implemented into fi-

nite element models, although one must recall that

the measurement of the mechanical anisotropy

parameters and the fitting of the anisotropy coeffi-

cients must be added to the total time required for

a prediction.

The main disadvantage of the yield surface con-

cept is that they do not consider that the inherited
sheet starting textures may evolve further in the

course of sheet forming. This means that reliable

anisotropy simulations should incorporate the
starting texture as well the gradual update of that

texture during deep drawing operations [35]. Some

recent results indeed indicate that the change in

crystallographic texture during deep drawing

may be relevant for the resulting ear shapes
[11,16].

In order to take into account texture evolution

during deformation, the crystallographic texture

models have been developed. These models can

be roughly classified into three groups, namely,

combinations of a Taylor-type strain-rate homo-

genization model and finite element formulations,

the crystal plasticity finite element model, and tex-
ture-function based crystal plasticity finite element

models.

The approach of combining a Taylor model

with a finite element model was introduced by

Gottstein and coworkers [36–39]. In this approach

the deformation tensor after each strain incre-

ment is used to prescribe the boundary condi-

tions for a corresponding Taylor simulation using
full constraints or coupled full constraints/grain

interaction homogenization model. Each of the

finite elements contains its representative crystallo-

graphic texture information in the form of a large

set of discrete grain orientations. The Taylor factor

calculated from homogenization is fed back into

the finite element simulation as a correction factor

for the flow stress in the ensuing simulation step.
The particular strength of this method lies in the

exact simulation of texture evolution under intri-

cate boundary conditions.

The crystal plasticity finite element models con-

sist in a direct implementation of crystallographic

slip kinematics into finite element models. It was

first suggested by Peirce and co-workers [39–42].

Based on their early work a fully-implicit time-
integration scheme was developed by Kalidindi

et al. [43] and implemented in commercial finite

element software in the form of a user-defined

subroutine. Crystal plasticity finite element models

provide a direct means for updating the material

state via integration of the evolution equations for

the crystal lattice orientation and the critical re-

solved shear stress. The deformation behavior of
the grains is at each integration point determined

by a crystal plasticity model, which accounts for

plastic deformation by crystallographic slip and
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for the rotation of the crystal lattice during defor-

mation. Pioneering related studies along these lines

have been published by Mathur and Dawson [44],

Smelser and Becker [45], and Beaudoin et al. [46].

Crystal plasticity finite element models represent
elegant tools for detailed simulation studies of

texture evolution under realistic boundary condi-

tions. Each integration point can represent one

single orientation or even a large set of discrete

grain orientations when combined with an appro-

priate homogenization assumption. Although the

latter case (mapping of a representative texture

on one integration point) is principally feasible, it
entails long calculation times, rendering the method

less practicable for industry-scale applications.

For rendering the crystal plasticity finite ele-

ment models more flexible with respect to the

treatment of large polycrystalline entities Raabe

and Roters recently introduced a texture compo-

nent crystal plasticity finite element model [47,

48]. The basic idea of this method consists in using
a more effective way of describing the texture of

macroscopic samples at each integration point,

turning the method into a texture component crys-

tal plasticity finite element method. More details

on this approach are given in the ensuing section.

1.2. Previous simulation studies on earing of body

centered cubic steels

Only few systematic simulation studies were

published on the earing behavior of body-

centered-cubic steels. For instance, Bacroix and

Gilormini [3] presented a detailed work on earing

in polycrystalline materials by use of finite-element

simulations. They used a texture-adjusted fourth-

order strain-rate potential and its associated
normality rule. The coefficients of the potential

function were directly obtained from the texture

coefficients. They applied the method successfully

to a mild steel. The approach was capable of

reproducing six ears for certain textures. Li et al.

[33,38] predicted the earing behavior of cup drawn

IF (interstitial free) steel sheets by use of a texture-

based plastic potential formulation. The group of
Nakamachi et al. [49,50] used an elastic–viscoplas-

tic finite element method to simulate the six and

four ears of drawn cups of body centered cubic
polycrystals. In order to achieve this goal they

used a large number of integration points in con-

junction with a crystal plasticity finite element for-

mulation. Each rotation matrix mapped at an

integration point was assumed to represent one
grain. The crystallites could hence rotate individu-

ally upon mechanical loading. The sheet metal

forming simulations of Nakamachi et al. [49,50]

were not only used to predict the earing behavior

but also to assess texture effects on strain localiza-

tion and failure. The authors reported that {111}-

huvwi orientations (c-fiber texture) are favorable

while the {hk l}h001i texture components where
less favorable for sheet formability of steels.

These studies provide in part excellent insight

into the relationship between the initial crystallo-

graphic texture of steel sheets before cup drawing

and the resulting ear profiles after deformation.

Building on these observations the present study

aims at pushing this effort a step further by, first,

rigorously incorporating texture update into the
simulations according to the crystal plasticity

scheme, second, by a systematic variation of the

relevant texture components typically occurring

in body-centered-cubic steels [22,23], and third,

by systematically varying the orientational scatter

width of those texture components. The simula-

tions are conducted by using the texture compo-

nent crystal plasticity finite element model. After
an introduction to this method and to the model

set-up we simulate the individual ear profiles

resulting from some typical texture components

of body-centered-cubic polycrystals. Subsequently,

we discuss the effects of these texture components

on the observed ear profiles and also the effects

of changes in the scatter width of these textures

on the ear profile.
2. The texture component crystal plasticity finite

element method

2.1. Introduction to the simulation method

A challenge of integrating constitutive polycrys-
tal plasticity laws into finite element approaches

lies in identifying an effective method of mapping

a crystallographic texture which represents a large
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number of grains on the integration points of a

finite element mesh. Such an approach must be

formulated in a way that still permits texture

update in the course of the forming simulation.

It is an important condition in that context
that crystal plasticity finite element models require

a discrete representation of the orientation dis-

tribution function at each integration point. For

relatively small numbers of grains (less than 103

crystals) the discrete mapping of the texture on the

mesh can be achieved by a one-to-one approach,

where each Gauss point in the finite element grid

is characterized by one crystallographic orienta-
tion [49–51]. This method, however, is not suitable

when meshing specimens which contain a much

large number of grains such as in a typical steel

sheet which is subjected to large scale metal form-

ing operations.

2.2. Texture components

The texture component finite element method is

a novel approach in the context described above

[16,47,48]. It is a technique of approximating an

initial orientation distribution function in the form

of discrete sets of symmetrical spherical model

functions and in mapping these components on a

finite element mesh. Model functions for textures

have individual height and individual full width
at half maximum as a measure for the strength

and scatter of the texture component they repre-

sent. In the formulation used for this study they

have the form of central functions, i.e. their scatter

is isotropic in orientation space. The reproduction

of the orientation distribution function by such

texture components can be expressed in terms of

the superposition

f ðgÞ ¼ F þ
XC
c¼1

Icf cðgÞ ¼
XC
c¼0

Icf cðgÞ where

I0 ¼ F ; f 0ðgÞ ¼ 1 ð1Þ

where g is the orientation, f(g) is the orientation

distribution function, and F is the volume portion

of all randomly oriented crystals (random texture

component). F may be understood as the intensity

of the only global component used in the approxi-

mation, equivalent to f c(g) = 1 for each orienta-
tion point in Euler space, g 2 G. The intensity I c

describes the volume fraction of all crystallites

belonging to the component c. The orientation

density of the component is described by a central

function, i.e. its value decreases isotropically with
increasing orientation distance ~xc ¼ ~xðg c; gÞ from
the maximum. This means that f c(g) only depends

on ~xc ¼ ~xðgc; gÞ, but it is independent on the rota-

tion axis ~nc. The orientation distribution function

is defined by

f ðgÞdg ¼ 8p2 dV g

V
which implies f ðgÞ P 0 ð2Þ

where V is the sample volume and dVg the volume

of all crystals with an orientation g within the ori-

entation portion dg ¼ sinð/Þd/du1du2. Normali-

zation requires

I
f cðgÞdg ¼ 1 which implies

XC
c¼0

Ic ¼ 1 ð3Þ

As a rule texture components require positivity,

i.e.

f cðgÞ P 0 for all g 2 G and Ic > 0 ð4Þ

where G is the orientation space.

Spherical central functions, including corre-

sponding pole figures, can be written as series
expansions of v functions or, respectively, Legendre
polynomials. More practical approximations of

texture components have been introduced on the

basis of spherical Gauss- and Lorentz-functions.

The work presented in this study makes use of

Gauss-shaped model functions for the decomposi-

tion of the orientation distribution function which

are described by

f cðgÞ ¼ Nc expðSc cos ~xÞ ð5Þ

where

Sc ¼ ln 2

1� cosðbc=2Þ and Nc ¼ 1

I0ðScÞ � I1ðScÞ
ð6Þ

The corresponding projection of that compo-

nent in a pole figure, Ph(g
c,bc,y), can be calculated

in closed analytical form according to
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Phðgc; bc; yÞ ¼ Nc expðSc sinðtc=2ÞÞI0ðSc cosðtc=2ÞÞ
ð7Þ

and

cos tc ¼ hðgc; yÞ ð8Þ
where tc describes the geometry of the component

c in the respective pole figure projection and Il (x)
the generalized Bessel functions. The index h in Ph

indicates the lattice plane normal (in crystal

coordinates) lying parallel (or antiparallel) to the

scattering vector y. The scattering direction y is

usually also referred to as sample direction since

it is related to the sample coordinate system. The

value bc is the half width and can be interpreted

as the mean diameter of a spherical component
in orientation space and gc is the center orientation

of the texture component [52,53]. The complete set

of texture components which describes the under-

lying orientation distribution in the best way can

be determined by solving a least squares problem

of the deviation between the experimentally

observed and the recalculated pole figures.

The texture component method is well suited
for an incorporation of texture into crystal plasti-

city finite element models because it is based on

sets of localized spherical normalized standard

functions which are characterized by simple

parameters of physical significance (Euler angle

triple for the main orientations, volume fractions,

full widths at half maximum). Typically only a

few texture components are required to describe
the orientation distribution function which in turn

can represent the texture of any grain assembly

whatever size it may have. The input textures can

be obtained from any experimental or theoretical

source.

The texture component method was originally

introduced by Lücke et al. [52] and later improved

by Helming [53]. The basic idea of using texture
components, however, goes back to the early tex-

ture studies where experimental and predicted pole

figures were mostly interpreted in terms of the evo-

lution and physical significance of discrete texture

components [17].

In Section 2.4 we will show how the texture

components can be decomposed and mapped on

a finite element grid in cases where the underlying
constitutive model has an orientation dependent

form.

2.3. The crystal plasticity constitutive model

In this study we use the constitutive crystal plas-

ticity model suggested by Kalidindi et al. [43]. In

this formulation one assumes the stress response

at each continuum point to be potentially given

by one crystal or by a volume-averaged response

of a set of grains comprising the respective material

portion. The latter assumption can be formulated

as a local strain-rate homogenization assumption.
In case of a multi-grain description the volume

averaged stress amounts to

hTi ¼
XN
k¼1

ðwkTkÞ ð9Þ

where N is the total number of individual orienta-

tions mapped onto an integration point using the

Taylor assumption, wk the volume fraction of each
single orientation extracted from a texture compo-

nent as described above, Tk the Cauchy stress pro-

duced by the kth individual orientation, and hTi
the volume average stress produced by all orienta-

tions mapped at the integration point. The consti-

tutive equation for the stress in each grain is then

expressed in terms of

T� ¼ CE� ð10Þ
where C is the fourth-order elastic tensor and E*

an elastic strain measure,

E� ¼ 1

2
ðF�TF� � 1Þ ð11Þ

obtained by the polar decomposition of the defor-

mation gradient,

F� ¼ FFp ð12Þ
with det(F*) > 0 and det(Fp) = 1. While the former

constraint for the determinant of the elastic part of

the deformation gradient, det(F*) > 0, means that
elastic volume changes are admissible the latter

constraint on the determinant det(Fp) refers to

the reasonable assumption of plastic incompressi-

bility.

The stress measure is the elastic work conjugate

to the strain measure E*,
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T� ¼ F��1ðdetðF�ÞTÞðF�Þ�T ð13Þ
where T is the symmetric Cauchy stress tensor in

the grain, and F* is a local elastic deformation gra-

dient defined in terms of the local total deforma-

tion gradient F and the local plastic deformation
gradient Fp. The plastic deformation gradient is

given by the flow rule

_F
p ¼ LpFp ð14Þ

with the velocity gradient

Lp ¼
XN
k¼1

_ckmk;mk ¼ b̂k � n̂k ð15Þ

where mk are the kth dyadic slip products of unit
vectors b̂k in the slip direction and n̂k normal to

the slip plane, and _ck the shear rates on these sys-

tems. The specific constitutive functions for the

plastic shearing rates _ck on the slip systems are

taken as

_ck ¼ _co
sk

sk;crit

����
����
1
m

sgnðskÞ ð16Þ

where sk is the resolved shear stress for the slip sys-

tem k, and sk,crit is the actual critical shear stress

on the kth slip system. _c0 is a reference value

of the slip rate and m represents the strain rate

sensitivity parameter. The calculation of sk,crit is
obtained by accounting for latent hardening
through the use of an appropriate hardening ma-

trix where the evolution of the slip system resis-

tance during deformation can be taken as

sk;crit ¼
X
i

hkij _cij; hki ¼ qkihðiÞ;

hðiÞ ¼ h0 1� si

ss

� �a

ð17Þ

where hki is the rate of strain hardening on the kth

slip system due to the shear rate, _ci, on the ith slip

system, qki are the components of a matrix which

describes the latent hardening behavior of the crys-

tal, and h(i) is the hardening rate of the single slip

system i. The hardening rate can be fitted by using

ss as a saturation parameter, and h0 and a as

adjustable parameters [54]. The values of h0, a,
and ss are taken to be identical for all slip systems.

The matrix hki assumes the form
hki ¼

A qA qA qA

qA A qA qA

qA qA A qA

qA qA qA A

2
6664

3
7775 ð18Þ

where q is the ratio of the latent hardening rate to

the self-hardening rate, and A is a 3 · 3 matrix

populated by ones.

In the present study, 24 slip systems with crys-

tallographic h110i slip directions and {111} as

well as {112} slip planes are taken into account

for room temperature simulations of ferritic, i.e.
body-centered-cubic steels.

2.4. Using texture components in a crystal plasticity

finite element simulation

The main task of the new concept is to repre-

sent sets of spherical Gaussian texture compo-

nents on the integration points of a finite
element mesh for a crystal plasticity simulation.

This procedure works in two steps, Fig. 1. First,

the discrete preferred orientation gc (center orien-

tation, mean orientation) is extracted from each

of the texture components and assigned in terms

of its respective Euler triple (u1,/,u2), i.e. in

the form of a single rotation matrix, onto each

integration point. This step corresponds to the
creation of a perfect single crystal. In the second

step, these discrete orientations are re-oriented in

such a fashion that their resulting overall distribu-

tion reproduces the texture function which was

originally prescribed in the form of a Gaussian

texture component. In other words the orienta-

tion scatter described initially by a texture com-

ponent function is in the finite element mesh
represented by a systematically re-oriented set of

orientations, each assigned to one integration

point, which reproduces the original spherical

scatter prescribed by that component.

This means that the scatter which was originally

only given in orientation space is now represented

by a distribution both, in real space and in orien-

tation space, i.e. the initial spherical distribution
is transformed into a spherical and lateral distribu-

tion. The described allocation and re-orientation

procedure is formulated as a weighted sampling

Monte Carlo integration scheme in Euler space.



Fig. 1. Schematical presentation of the two steps required for mapping a texture component on the integration points: (a) in the first

step the preferred orientation gc (center orientation) of each texture component is assigned onto each integration point and (b) in the

second step the orientations are re-oriented in such a way that their distribution reproduces the texture function which was originally

prescribed in the form of a Gaussian texture component.
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It is an important detail that the use of the Tay-

lor assumption locally allows one to map more

than one preferred crystallographic orientation

on each integration point and to assign to each
of them an individual volume fraction. This means

that the procedure of mapping and rotating single

orientations in accord with the initial texture com-

ponent scatter width is individually conducted for

all prescribed components as well as for the ran-

dom background extracted from initial experimen-

tal or theoretical data.

After decomposing and representing the initial
texture components as a lateral and spherical sin-

gle orientation distribution in the mesh, the texture

component concept is no longer required in the fur-

ther procedure. This is due to the fact that during

the subsequent crystal plasticity finite element sim-

ulation each individual orientation originally per-

taining to one of the texture components which

were initially mapped on the finite element mesh
can undergo an individual orientation change as

in the conventional crystal plasticity methods. This

means that the texture component method loses its

significance during the simulation. In order to

avoid confusion one should, therefore, underline

that the texture component method is used to feed

textures into finite element simulations on a strict

physical and quantitative basis. The components

as such, however, are in their original form as

compact functions not tracked during the simula-

tion, but only the individual orientation fractions

which compose them. It must also be noted that

the orientation points which were originally ob-

tained from the components do not represent indi-
vidual grains but portions of an orientation dis-

tribution function.
3. Set-up of the finite element model and

simulation details

3.1. Finite element model

The finite element calculations were conducted

by using MSC/Marc in conjunction with the user

defined material subroutine HYPELA2 [55]. An
implicit crystal plasticity procedure developed by

Kalidindi et al. [43] was implemented and used

for the time integration of the constitutive equa-

tions. Hardening of the ferritic low carbon body-

centered-cubic steel was described in terms of a

set of adjustable parameters, i.e. _c0 ¼ 0.001 s�1

was used as reference value for the slip rate. The

strain rate sensitivity parameter m was taken as
0.05. As hardening matrix parameters we used

qab = 1.0 for coplanar slip systems and qab = 1.4

for non-coplanar systems. The components of

the elasticity tensor (pure single crystalline Fe)

were taken as C11 = 230.1 GPa, C12 = 134.6 GPa,

and C44 = 116.6 GPa. The values of the slip system

hardening parameters h0, a, and ss, and the initial

value of the slip resistance s0 were taken to be
h0 = 180 MPa, ss = 148 MPa, a = 2.25, and s0 =

16 MPa. The potential slip system families are

the 12 {111}h111i and the 12 {112}h111i
systems.

Fig. 2a shows the geometry of the tools used in

the simulation. Due to the orthotropic sample



Fig. 2. (a) Finite element model showing the geometry of the tools in units of mm and (b) mesh configuration.
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symmetry of the deformation problem, only a

quarter of the blank was modeled. A set of 1584

eight-node brick elements was used to discretize

the sample. Fig. 2b shows the mesh configuration

of the specimen. The Coulomb friction coefficient

was assumed to be l = 0.1 between the punch
and the blank. With these parameters each simula-

tion run required about 4–8 h of CPU time on a

UNIX single processor workstation.

3.2. Investigated texture components and random

texture

The texture components which typically occur
with notable volume fractions in rolled and

subsequently heat treated body centered cubic steel

sheets [22,23] are the {001}h110i or 45� about the
normal rotated cube component (u1 = 0�, / = 0�,
u2 = 45�), the (111)[1�10] component (u1 = 0�,
/ = 54.7�, u2 = 45�), and the (111)[11�2] compo-

nent (u1 = 90�, / = 54.7�, u2 = 45�). While the

{111} huvwi texture components are the two most
relevant orientations emerging during primary

recrystallization the (001)[110] component is

inherited from rolling owing to pronounced recov-

ery [55,57]. Another important texture component

often resulting from recrystallization is the u1 =

15�, / = 45�, u2 = 50� (� (557)[583]) orientation

which is about 10� off the {111}huvwi fiber

[22,23] (all Euler triples are given in Bunge nota-
tion [57].)

The texture component crystal plasticity finite

element simulations in this study are conducted

by using combinations of the texture components
given above (with 7� and with 15� full width at half

maximum) with a random background compo-

nent, Table 1. The incorporation of the random

portion of the starting texture in the form of a

pseudo-component may be important [16,48]

because random starting textures do, as a rule,
not necessarily remain random during forming.

As any other orientation, randomly distributed

orientations may gradually reorient during the

forming process and enhance or smoothen anisot-

ropy as a result of texture evolution. Although the

contribution of the random pseudo-component is

of course an isotropic one in the beginning of

deformation it may evolve into an anisotropic
one during deformation.

The random background texture component is

in principle assigned to the integration points in

the same way as the regular ideal texture compo-

nents. This means that in the current study each

integration point is described by one rotation ma-

trix which is selected randomly from the set of

spherical orientation component functions (typical
texture components) and a second rotation matrix

which is generated as a random orientation. Like

the prescribed ideal texture components, the ran-

dom texture component does cease to exist as a

component in the further simulation procedure

[47]. This is due to the fact that during the subse-

quent crystal plasticity finite element simulation

each individual pair of orientations, originally per-
taining to one of the texture components and to

the random component, can undergo an individual

orientation change as in the conventional crystal

plasticity methods [40–43].



Table 1

Texture components and orientation scatter used as starting conditions in the simulations

Ideal texture component Random texture component

u1 [�] / [�] u2 [�] Scatter width [�] Volume fraction [%] Orientation Volume fraction [%]

0 54.7 45 7 and 15 80 Random 20

90 54.7 45 7 and 15 80 Random 20

15 45 50 7 and 15 80 Random 20

0 0 45 7 and 15 80 Random 20
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Owing to the orthorhombic sample symmetry

each of the single orientations has in the starting

texture to be balanced by three additional symmet-

rically equivalent orientations in order to correctly

reproduce the response of the material in the crystal

plasticity finite element calculations. Consequently,

each of the symmetrical variants was assigned one

quarter of the volume of the original component,
i.e. 20 vol.% of the total volume at one integration

point. The remaining 20 vol.% is occupied by the

randomly selected orientation. This initial symme-

try operation is required since the starting data

which are typically taken from experimental X-

ray data do not allow one to differentiate between

the different symmetrical variants of a texture com-

ponent owing to Friedel�s law and to the symmetry
group of the sample coordinate system.
Fig. 3. Ear profiles of individual texture components with: (a)

scatter width 7� and (b) scatter width 15�.
4. Results and discussion

4.1. Simulations

Fig. 3 shows the simulated ear profiles for the

four individual texture components together with

the random component for different scatter

widths. Cup drawing of the two {111}huvwi
texture components (u1 = 0�, / = 54.7�, u2 = 45�
and u1 = 90�, / = 54.7�, u2 = 45�, respectively)

leads in either case to a six-ear profile. This type
of shape is principally in accordance with earlier

studies. It can be explained in terms of the corre-

sponding symmetry of the Schmid tensors of the

{111}huvwi texture components. While a specific

{111}huvwi orientation has a threefold symmetry

at the beginning of loading (see schematical draw-

ing in Fig. 4a) the addition of the other three sym-

metrical equivalent orientations results in an
altogether sixfold symmetry, Fig. 4b. The fact that
the 6 ears do not reach the same height, as pre-

dicted by homogenization theory, may be attrib-

uted to the effect of texture evolution occurring

during forming. This observation suggests that

both, the incorporation of a random background

component and the use of a crystal plasticity

method allowing for texture update, are necessary

ingredients in such simulations.
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The course of the ear profiles (for both scatter

widths) of the (111)[1�10] component (u1 = 0�,
/ = 54.7�, u2 = 45�) shows a mirror symmetrical

shape relative to 45� to those of the (111)[11�2]
component (u1 = 90�, / = 54.7�, u2 = 45�), Fig.
3a and b. This symmetry can be explained in terms

of some simple considerations about those h111i
slip directions which predominantly determine

the deformation of {111}huvwi texture compo-

nents in body centered steel sheets, Fig. 4a: The
Fig. 4. Schematical diagram with some important symmetries: (a) of p

cup drawing of body centered cubic materials and (b) the slip arrows a
two texture components (111)[1�10] and (111)

[11�2] have a 30� rotation relationship among each

other when rotated about their common [111] nor-

mal direction. Each of the two texture components

has three dominant active slip directions as indi-
cated by the projected arrows in the top row of

Fig. 4b. The initial symmetry operations explained

above, which add to each orientation at an inte-

gration point three symmetrical equivalents (in

the case of orthorhombic sample symmetry),
rojected h111i slip directions which are relevant for earing and

re projected into the rolling plane assuming a top view position.
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contributes three more dominant active slip direc-

tions to each Gauss point (see dotted gray arrow

projections in the upper row of Fig. 4b). The

resulting configuration for the two {111}huvwi
texture components then reveals a 45� symmetry
relationship as indicated by the sketch in the

bottom row of Fig. 4b. This symmetry effect

induced by the predominant h111i slip directions

is actually visible in Fig. 3a and b.

In the six ear profiles of the two {111}huvwi
texture components not all ears have the same

height, i.e. two sets of three (symmetrically similar)

ears differ from each other both in terms of height
Fig. 5. Influence of the spherical scatter width of the texture compone

(111)[1�10]; (b) u1 = 90�, / = 54.7�, u2 = 45�, (111)[11�2], (c) u1 =

u2 = 45�, (001)[110].
and shape. Figs. 3b, 5a and b reveal that this effect

is smoothened when the scatter width (full width at

half maximum) of the initial texture components is

increased from 7� (Fig. 3a) to 15� (Fig. 3b). The

texture component u1 = 15�, / = 45�, u2 = 50�
leads to eight ears. Figs. 3a and 5c show that

two sets of ears exist with different height and

shape. The rotated cube component, u1 = 0�,
/ = 0�, u2 = 45�, (001)[110], reveals only four

huge ears along the rim of the drawn cup. Fig.

5d shows that an increase in the initial orientation

scatter for the texture component, results also in

an increase of the ear height.
nts on the resulting ear profiles: (a) u1 = 0�, / = 54.7�, u2 = 45�,
15�, / = 45�, u2 = 50�, �(557)[583] and (d) u1 = 0�, / = 0�,
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The presented ear profiles of the four individual

texture components suggest that they essentially

reproduce the symmetry of the crystallography of

the center orientation relative to the sheet and

forming symmetry.
According to the rim shapes characteristic

differences occur in ear height for the various start-

ing textures. The u1 = 0�, / = 0�, u2 = 45� compo-

nent clearly shows a maximum variation in the ear

height along the cup rim. This means that this tex-

ture component is very detrimental with respect to

the in-plane isotropy of formed steels. Owing to

its large impact on the overall shape anisotropy
and its fourfold symmetry its effect on the yield

anisotropy cannot be easily compensated. Such

compensation, which is for instance exploited in

the field of aluminum forming [16], would require

texture components with a shape anisotropy

which is inverse to that of the u1 = 0�, / = 0�,
u2 = 45� component. However, such orientations

do not exist in typcial textures of rolled and an-
nealed steel sheets [18–23]. The conclusion from

that is that the u1 = 0�, / = 0�, u2 = 45� texture

component must be avoided in sheet steels

which are subject to subsequent cup drawing

operations.

The ear profile generated by the u1 = 0�,
/ = 54.7�, u2 = 45� and u1 = 90�, / = 54.7�, u2 =

45� texture components is much smoother when
compared to that of the 45� rotated cube orienta-

tion. Furthermore, the occurrence of the two tex-

ture components with the same volume fraction

together in one sheet leads to a perfect isotropic

shape owing to their 30� h111i rotational or

respectively 45� mirror equivalence, i.e. the planar

anisotropy would be zero for such a case.

4.2. Recommendations with respect to texture

design of body-centered-cubic steel sheets

It is well known that recrystallization in body-

centered-cubic steel sheets is not homogeneous

but highly orientation dependent [17–23,55–58].

Both, the kinetics and the resulting grain morpho-

logy considerably depend on the deformation tex-
ture. This is in particular true for the strongest or

second-strongest cold rolling texture component

{001}h110i (u1 = 0�, / = 0�, u2 = 45�) [55,57].
Recrystallization in such grains can be delayed in

case of a small and even suppressed in case of a

larger grain size [55,57,59,60]. Also, the presence

of small precipitations on the grain boundaries

can play an important role in that context. This al-
lows for strong recovery of grains with a

{001}h110i orientation in sheet steels. Even at

the final stage of recrystallization {001}h110i
oriented crystals do often not reveal a sufficient

number of recrystallization nuclei inside their

grain borders. More typically recrystallization in

{001}h110i oriented grains occurs by newly

formed crystals entering from neighboring grains.
This substantial reluctance of {001}h110i ori-

ented crystals against recrystallization is often en-

hanced by the fact that certain amounts of this

texture component are inherited from the final

hot rolling steps due to (planned or unplanned)

insufficient austenitization. In sum it is, therefore,

sensible to avoid the occurrence of this texture

component in annealed body-centered-cubic steel
sheets. The opposite is true for the {111}huvwi
texture fiber. The recrystallization behavior of

these grains has been the subject of a number of

thorough studies in the past [17–23]. Owing to

the predicted ear profiles discussed above an

optimum shape isotropy can be achieved by a

one-to-one mixture of the two main texture com-

ponents (111)[1�10] and (111)[11�2].
5. Conclusions

We used a texture component crystal plasticity

finite element method to investigate the effect of

texture on the earing behavior in body-centered-

cubic steel sheets. The conclusions are:

1. The ear profiles depend strongly on the respec-

tive texture component: The two {111}huvwi
texture components (u1 = 0�, / = 54.7, u2 =

45� and u1 = 90�, / = 54.7�, u2 = 45�) lead

to six ears. The texture component u1 = 15�,
/ = 45�, u2 = 50� leads to eight ears. The pres-

ence of the rotated cube component, u1 = 0�,
/ = 0�, u2 = 45�, leads to four huge ears.

2. An increase in the number of ears entails a drop

in the ear height.
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3. An increase in the orientation scatter of the tex-

ture component before deformation does not

generally lead to a drop in the resulting shape

anisotropy.

4. Owing to its large in-plane anisotropy the
rotated cube component (which may result

from pronounced recovery) should be avoided

as a main texture component in body-centered-

cubic steel sheets.

5. In principal the incorporation of a random tex-

ture component prior to mechanical loading is

useful in order to properly account for anisot-

ropy which arises from texture evolution effects
during forming. In the present case, however,

texture evolution of that random component

seems to be of minor importance for the final

earing profile.

6. The texture component finite element method

can be used as an engineering numerical labora-

tory which helps the user to decide which form-

ing situations require the direct incorporation
of texture including texture update and which

do not. Also, it can be used to derive phenomeno-

logical constitutive data as input parameters for

instance for yield surface simulations. We

assume that future commercial applications of

anisotropy theory in conjunction with industry-

scale forming and tool design simulations will

make increasingly use of the texture component
crystal plasticity finite element method owing

to its physically-based foundations and the

ever-decreasing costs associated with CPU time.
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