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Abstract

The influence of discrete texture components and combinations of them on the earing behavior of aluminium during cup drawing

was systematically investigated using the texture component crystal plasticity finite element method. Several common texture

components and their combinations were selected and the resulting ear profiles were calculated under consideration of texture

changes. The spherical scatter width of the components was also taken into account as an optimization parameter. The study reveals

that the ear height and profile can be minimized by an optimized combination of certain texture components including their scatter

width. A solution for minimum earing of cup drawn aluminium was obtained for a combination of the S and the Cube texture

components with 15° spherical scatter width.

Ó 2003 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Motivation

Engineering polycrystalline materials often exhibit

significant elastic–plastic anisotropy that can be attrib-

uted to the presence of crystallographic texture.

In the early industrial practice texture was long a

property of polycrystals which was simply inherited

from the preceding processing steps without conducting

particular anisotropy optimization. This means that

textures were known as an inevitable side-effect of ma-

terials processing which was hard to avoid and often

accepted as it was. In contrast, modern industrial pro-

cess design gradually aims at optimizing microstructures

and properties during production, i.e., its goal consists

in exploiting metallurgical mechanisms such as crystal

plasticity, recrystallization, grain growth, and phase

transformation for the design of well tailored crystallo-

graphic textures with respect to certain desired anisot-

ropy properties of the final product.

A typical example is the development of {1 1 1} huvwi
textures of soft interstitial-free steels (IF steels) which

are optimized with respect to sheet forming. In these

body centered cubic (bcc) materials the {1 1 1} h11�2i
and {1 1 1} h1�10i texture components each reveal a

sixfold symmetry of the shape change with respect to the

sheet surface, due to the symmetry of the active crys-

tallographic slip dyads. In case that a complete fiber

texture exists with a common h111i crystal axis parallel
to the sheet surface a very high planar-through-thickness

anisotropy (r-value or Lankford-value) and a vanishing

in-plane anisotropy (Dr-value) exists.

The most recent phase in the advancement of quanti-

tative texture and anisotropy engineering consists in the

introduction of inverse texture simulation methods. Such

approaches are designed for the physically based tailoring

of optimum textures for final products under consider-

ation of prescribed processing and materials conditions

on an inverse basis. This means that variational texture
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optimization can nowadays be conducted in a way to

match some desired final anisotropy and can help to

identify beneficial corresponding processing parameters.

This amounts to a tenet change in the sense that the

process should no longer determine the textures but the

desired textures should determine the process.

Plastic anisotropy during deep drawing may entail

the formation of uneven rims of the drawn product,

usually referred to as earing. One important conse-

quence of that is – besides the irregular shape of the

drawn specimen – an inhomogeneous distribution of the

mechanical properties and of the wall thickness due to

volume conservation and the kinematically necessary

strain rate variation.

The trivial solution for the control andminimization of

earingwouldbe thepresence of a randomcrystallographic

texture prior to loading. However, such a supposed ob-

vious approach is prevented due to two reasons. First,

random starting textures do generally not remain random

when the material is plastically deformed. This applies in

particular to sheet forming operations. Second, complete

spherical and topological randomization of textures is

very difficult. Most metallurgical and mechanical pro-

cesses promote rather reduce orientation distributions.

This applies in particular to most face centered cubic (fcc)

metals, in particular to those without bulk phase trans-

formation during forming such as aluminium.

Therefore, a more practical approach for reducing

shape anisotropy lies in combining the texture compo-

nents constituting the initial sheet in such a way that the

resulting ear profile – accounting also for texture chan-

ges during forming – can be minimized owing to the

mutual compensation of the shape anisotropy contri-

butions introduced by the individual texture compo-

nents during forming.

The present work pursues this approach. We apply an

inverse texture simulation method to the optimization of

the shape anisotropy occurring during cup drawing of fcc

polycrystals with a high stacking fault energy containing

a large number of grains (large meaning ngrains > 104 as

typically present in engineering sheet material). As a

typical sample material we choose the constitutive be-

havior of aluminium. The rolling texture in such alloys is

primarily composed of the S orientation, {1 2 3} h63�4i,
the Brass orientation, {1 1 0} h1�12i, and the Copper ori-

entation {1 1 2} h11�1i. These texture components pro-

mote earing essentially at 45°/135° with respect to the

rolling direction. Annealing textures which may contain

the Cube orientation, {1 0 0} h001i, and also some Goss

orientation, {1 1 0} h001i, also promote pronounced

earing, namely, at the 0/90° directions for the Cube ori-

entation and the Goss orientation [1–9]. A useful ap-

proach, therefore, might consist in creating a sheet

material with a low ear ratio by a suitable combination of

crystals with an orientation that results in 45°/135° ears

and those that produce 0/90° ears [1,2].

In order to identify a theoretical solution for mini-

mum shape anisotropy after deep drawing as a result of

a suited combination of these orientations we employ

a texture component crystal plasticity finite element

method [10–14]. The use of this new simulation method

offers five main advantages. First, the approach allows

one to conduct predictions of earing including all texture

changes occurring during deep drawing. Second, the

method is quantitative. Third, the approach allows us to

also simulate wall thickness and heterogeneity of the

mechanical properties after deformation. Fourth, the

predictions include the optimization of the spherical

scatter width of texture components. Fifth, the methods

allows us to directly feed in the starting textures.

The purpose of this paper consists first, in deriving

the ideal texture composition for minimum earing in

fcc metals with high stacking fault energy in a quanti-

tative fashion and second, to establish the texture

component crystal plasticity finite element method as a

pertinent inverse materials engineering tool for anisot-

ropy optimization.

After an introduction to the new texture component

crystal plasticity finite element method (TCCP-FEM)

and to the model set-up we simulate the individual ear

profiles of some main texture components of rolled and

annealed aluminum. Subsequently, we present for two

of them, namely, for the Cube and the S orientation, a

set of simulations which aims at optimizing their volume

ratio for obtaining minimum earing including the dis-

cussion of the influence of the spherical scatter width of

the texture components on the ear profile.

2. The texture component crystal plasticity finite element

method

2.1. Basics

Crystal plasticity finite element models represent

helpful tools for detailed simulation studies of texture

evolution under realistic mechanical boundary condi-

tions and under consideration of texture update. A di-

rect implementation of crystal plasticity theory into

finite element models was first suggested by Pierce and

coworkers [15–18]. Based on their work a fully-implicit

time-integration scheme was developed by Kalidindi

et al. [19] and implemented in commercial finite element

software. This model provides a direct means for up-

dating the material state via integration of the evolution

equations for the crystal lattice orientation and the

critical resolved shear stresses of the individual slip

systems.

An intrinsic challenge of directly integrating consti-

tutive polycrystal plasticity laws into finite element

approaches lies in identifying an effective method of

mapping a representative crystallographic texture, com-
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prising a large number of grains, on the integration

points of the finite element mesh using a compact

mathematical form which still permits texture update

during loading.

It is an essential boundary condition in this context

that crystal plasticity finite element approaches require a

discrete representation of the orientation distribution

function at each integration point. When dealing with

a relatively small number of grains (small meaning

ngrains < 104) a discrete mapping of the texture is

achieved by a simple one-to-one approach, where each

Gauss point in the finite element mesh is occupied by

one discrete crystallographic orientation. This ap-

proach, however, is inappropriate when simulating

samples which contain a much larger number of grains.

From an engineering perspective it is obvious that an

appropriate mapping of such a discrete texture requires

the reduction of the orientational information content to

a level at which complex deformation processes can be

simulated without the help of a supercomputer.

2.2. Texture components

The texture component method offers a useful ap-

proach in the context described above. It is a technique

of approximating the orientation distribution function

in the form of discrete sets of symmetrical spherical

model functions which are defined in orientation space.

The model functions have individual height and indi-

vidual full width at half maximum as a measure for the

strength and scatter of the crystallographic texture

component they represent. They are typically formu-

lated as central functions which have an isotropic scatter

in orientation space.

The mathematical reproduction of the orientation

distribution function by texture component functions

can be expressed by the superposition

f ðgÞ ¼ F þ
X

C

c¼1

Icf cðgÞ ¼
X

C

c¼0

Icf cðgÞ where I0 ¼ f ;

f 0ðgÞ ¼ 1; ð1Þ

where g is the orientation, f ðgÞ is the orientation dis-

tribution function, and F is the volume portion of all

randomly oriented crystals (random texture compo-

nent). F may be understood as the intensity of the only

global component used in the approximation, equivalent

to f cðgÞ ¼ 1 for each orientation point in Euler space,

g 2 G. The intensity I c describes the volume fraction of

all crystallites belonging to the component c. The ori-

entation density of the component is described by a

central function, i.e., its value decreases isotropically

with increasing orientation distance ~xc ¼ ~xðgc; gÞ from
the maximum. This means that f cðgÞ only depends on
~xc ¼ ~xðgc; gÞ, but it is independent on the rotation axis

~nc.

The orientation distribution function is defined by

f ðgÞdg ¼ 8p2 dVg

V
which implies f ðgÞP 0; ð2Þ

where V is the sample volume and dVg the volume of all

crystals with an orientation g within the orientation

portion dg ¼ sinð/Þd/du1 du2. Normalization requires

I

f cðgÞ dg ¼ 1 which implies
X

C

c¼0

I c ¼ 1: ð3Þ

As a rule texture components require positivity, i.e.,

f cðgÞP 0 for all g 2 G and Ic > 0; ð4Þ

where G is the orientation space.

Spherical central functions, including corresponding

pole figures, can generally be represented in the form

of series expansions of v functions or, respectively,

Legendre polynomials. More practical approximations

of texture components have been introduced on the

basis of spherical Gauss- and Lorentz-functions. The

work presented in this study makes use of Gauss-shaped

model functions for the decomposition of the orienta-

tion distribution function which are described by

f cðgÞ ¼ N c exp Sc cos ~x
� �

; ð5Þ

where

Sc ¼
ln 2

1ÿ cosðbc=2Þ
and N c ¼

1

I0ðScÞ ÿ I1ðScÞ
: ð6Þ

The according pole figure projections PM
h gc; bc; yð Þ

can be calculated in closed analytical form

PM
h gc; bc; yð Þ ¼ N c exp Sc sinðtc=2Þð ÞI0 Sc cosðtc=2Þð Þ; ð7Þ

where tc describes the geometry of the component in the

respective pole figure projection and IlðxÞ are generalized
Bessel functions. The value bc is the halfwidth and can

be interpreted as the mean diameter of a spherical

component in orientation space and gc is the center

orientation of the texture component [22].

The components describing f ðgÞ can be determined

by the best fit of the experimental pole figure input

data ~PM
hi

yrð Þ=Nhi with the recalculated pole figures
P

cI
c~PM

h gc; bc; yrð Þ. The index r marks the measured

sample directions yr. The component parameters Ic, gc

and bc and the normalization Nhi of the pole figures are

obtained by solving the least squares problem

X

i;r

wir
~Phi yrð Þ=Nhi

"

ÿ
X

c

I c~PM
hi

gc; bc; yrð Þ

#2

) Min; ð8Þ

where wir are weight factors. Usually the parameters gc

and bc must be calculated by a non-linear algorithm.

First estimates are required, which may be obtained

manually from the graphical representation of the dif-

ference pole figures which are calculated according to
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Dhi yrð Þ ¼ ~Phi yrð Þ ÿ
X

c

Ic~PM
hi

gc; bc; yrð Þ: ð9Þ

Depending on experience in interpreting crystallo-

graphic textures the user can specify the position, height,

and scatter of the texture components within certain

bounds before the minimization. This makes particu-

larly good sense when the number of texture compo-

nents initially prescribed to match an experimental

texture is small or when a certain scatter width of the

components should not be exceeded.

In contrast to the use of global symmetric Wigner

functions as used for instance in the Fourier-type series

expansion methods, the texture component method is

well suited for an incorporation of texture into crystal-

lographic finite element methods. This advantage is due

to the fact that the method is based on using sets of

localized spherical normalized standard functions which

are characterized by simple parameters of physical sig-

nificance (Euler angle triple for the main orientations,

volume fractions, full widths at half maximum). Typi-

cally only a few texture components are required to

describe the orientation distribution function which in

turn can represent the texture of any grain assembly

whatever size it may have. The texture component

method allows one to extract texture information in a

compact fashion from experiment or theory.

The texture component method was originally in-

troduced by L€ucke et al. [20,21] and later improved by

Helming [22]. The basic idea of using texture compo-

nents, however, goes back to the early texture studies

where experimental and predicted pole figures were

mostly interpreted in terms of the evolution and physical

significance of discrete texture components. Classical

terms introduced in these early studies on crystallo-

graphic orientation distributions were for instance the

‘‘Copper texture component’’, the ‘‘Brass texture com-

ponent’’, or the ‘‘Taylor texture component’’ (the stable

orientation of a Taylor Full Constraints model). The

use of preferred orientations prevailed in texture re-

search until the late sixties of the last century, i.e.,

statements about texture evolution were made practi-

cally exclusively on the basis of pole figures and esti-

mated preferred components (ideal positions, texture

components).

In Section 2.4 we will describe how texture compo-

nents can be decomposed and mapped on a finite ele-

ment grid in cases where the underlying constitutive

model has been formulated in an orientation dependent

fashion.

2.3. The crystal plasticity constitutive model

In our approach we use the large-strain constitutive

crystal plasticity model suggested by Kalidindi [19]. In

this formulation one assumes the stress response at each

macroscopic continuum material point to be potentially

given by one crystal or by a volume-averaged response

of a set of grains comprising the respective material

point. The latter assumption can be referred to as a local

Taylor-type or local strain-rate homogenization as-

sumption. In case of a multi-grain description the vol-

ume averaged stress amounts to

Th i ¼
X

N

k¼1

wkTkð Þ; ð10Þ

where N is the total number of individual orientations

mapped onto an integration point using the Taylor as-

sumption, wk the volume fraction of each single orien-

tation extracted from a texture component as described

above, Tk the Cauchy stress produced by the kth indi-

vidual orientation, and Th i the volume average stress

produced by all orientation mapped at the integration

point. The constitutive equation for the stress in each

grain is then expressed in terms of

T� ¼ CE�; ð11Þ

where C is the fourth order elastic tensor and E� an

elastic strain measure,

E� ¼ 1
2
F�TF�
ÿ

ÿ 1
�

ð12Þ

obtained by the polar decomposition,

F ¼ F�Fp; ð13Þ

which leads to a stress measure which is the elastic work

conjugate to the strain measure E�,

T� ¼ F�ÿ1 det F�ð ÞTð Þ F�ð Þ
ÿT
; ð14Þ

where T is the symmetric Cauchy stress tensor in the

grain, and F� is a local elastic deformation gradient

defined in terms of the local total deformation gradient

F and the local plastic deformation gradient Fp. Ac-

cording to Eq. (12) the relation between the elastic and

the plastic portion of F amounts to

F� ¼ F Fpð Þ
ÿ1
; det F�ð Þ > 0; det Fpð Þ ¼ 1: ð15Þ

The plastic deformation gradient is given by the flow

rule

_Fp ¼ LpFp ð16Þ

with its crystalline portion

Lp ¼
X

N

k¼1

_ckmk; mk ¼ b̂k 
 n̂k; ð17Þ

where mk are the kth dyadic slip products of unit vectors

b̂k in the slip direction and n̂k normal to the slip plane,

and _ck the shear rates on these systems. The specific

constitutive functions for the plastic shearing rates _ck on

the slip systems are taken as

_ck ¼ _co
sk

sk;crit

�

�

�

�

�

�

�

�

1=m

sgn skð Þ; ð18Þ
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where sk is the resolved shear stress for the slip system k,

and sk;crit is the actual critical shear stress on the kth slip

system. _co and m are material parameters representing

shearing rate and the rate sensitivity of slip. The calcu-

lation of sk;crit has been achieved by accounting for latent

hardening through the use of an appropriate hardening

matrix,

_sk;crit ¼
X

i

hki _ci
�

�

�

�

�

�; hki ¼ qkihðiÞ; ð19Þ

where hki is the rate of strain hardening on kth slip

system due to a shearing on ith slip system, qki is the

hardening matrix describing the latent hardening be-

havior of a crystallite, and hðiÞ is the hardening rate of

the single slip system i. In the present study, 12 slip

systems with crystallographic h110i slip directions and

{1 1 1} slip planes are taken into account for room

temperature simulations of plastic deformation of alu-

minium. The matrix hki can be taken as

hki ¼

A qA qA qA

qA A qA qA

qA qA A qA

qA qA qA A

2

6

6

4

3

7

7

5

; ð20Þ

where q is the ratio of the latent hardening rate to the

self-hardening rate, and A is a 3� 3 matrix populated by

ones. Using this constitutive description renders the fi-

nite element method an elegant tool for detailed simu-

lation studies of texture evolution and strain distribution

under realistic boundary conditions. Each integration

point can represent one single orientation or a larger set

of crystals as outlined above [9–14].

2.4. Using texture components in a crystal plasticity finite

element simulation

The main task of the new concept is to represent sets

of spherical Gaussian texture components on the inte-

gration points of a finite element mesh for a crystal

plasticity simulation. This procedure works in two steps:

First, the discrete preferred orientation gc (center ori-

entation, mean orientation) is extracted from each of the

texture components and assigned in terms of its re-

spective Euler triple ðu1;/;u2Þ, i.e., in the form of a

single rotation matrix, onto each integration point

(Fig. 1(a)). For this step we use the method of Helming

[22]. In the second step, these discrete orientations are

re-oriented in such a fashion that their resulting overall

distribution reproduces the texture function which was

originally prescribed in the form of a Gaussian texture

component (Fig. 1(b)). In other words the orientation

scatter described initially by a texture component func-

tion is in the finite element mesh represented by a sys-

tematically re-oriented set of orientations, each assigned

to one integration point, which reproduces the original

spherical scatter prescribed by that component. This

means that the scatter which was originally only given in

orientation space is now represented by a distribution

both, in real space and in orientation space, i.e., the

initial spherical distribution is transformed into a

spherical and lateral distribution. The described alloca-

tion and re-orientation procedure is formulated as a

weighted sampling Monte Carlo integration scheme in

Euler space. It is important in this context, that the use

of the Taylor assumption locally allows one to map

more than one preferred crystallographic orientation on

each integration point and to assign to each of them an

individual volume fraction (Fig. 2). This means that the

procedure of mapping and rotating single orientations in

accord with the initial texture component scatter width

is individually conducted for all prescribed components

as well as for the random background extracted from

initial experimental or theoretical data.

After decomposing and representing the initial tex-

ture components as a lateral and spherical single ori-

entation distribution in the mesh, the texture component

concept is no longer required in the further procedure.

This is due to the fact that during the subsequent crystal

plasticity finite element simulation each individual

Fig. 1. (a) Schematic drawing showing the first step of the decompo-

sition of a texture component where the preferred orientation (center

or mean orientation of the texture component) is extracted from the

texture component and assigned in terms of its respective Euler triple

ðu1;/;u2Þ, i.e., in the form of a single identical rotation matrix, onto

each integration point. In this state the sample is a single crystal. (b)

Schematic drawing showing the second step of the decomposition of a

texture component where the mapped single orientations taken from

the center of the texture component are systematically rotated in such a

fashion that their resulting overall distribution reproduces exactly the

original texture function which was prescribed in the form of a texture

component.
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orientation originally pertaining to one of the texture

components can undergo an individual orientation

change as in the conventional crystal plasticity methods.

This means that the texture component method loses its

significance during the simulation. In order to avoid

confusion one should, therefore, underline that the

texture component method is used to feed textures into

finite element simulations on a strict physical and

quantitative basis. The components as such, however,

are in their original form as compact functions not

tracked during the simulation. It must also be noted that

the orientation points which were originally obtained

from the components do not represent individual grains

but portions of an orientation distribution function.

3. Set-up of the finite element model and simulation details

The finite element calculations were carried out using

the commercial finite element program ABAQUS in

conjunction with the user defined material subroutine

UMAT [23]. An implicit crystal plasticity procedure

developed by Kalidindi [19] was implemented and used

for the time integration of the constitutive equations.

Hardening was fitted to match the behavior of pure

aluminium. We used the 12 {1 1 1} h1�10i slip systems to

formulate the crystallographic slip dyads.

Fig. 3(a) shows the geometry of the tools used in the

simulation. Due to the orthotropic sample symmetry,

only a quarter of the blank has to be represented in the

simulation. Fig. 3(b) shows the mesh configuration of

the specimen prior to loading. The angular element

density increases from the blank center to the border in

order to obtain good accuracy along the final border of

the cup. The blank was modeled using 432 elements of

type C3D8 and 80 elements of type C3D6.

The interaction between the blank and the blank

holder was modeled in three steps. In the first step the

blank holder was pushed onto the blank with a pre-

scribed displacement corresponding to zero clearance

across the interface between the blank and the holder. A

specified clamping pressure was imposed across the el-

ement thickness via softened surface control. In the

present simulations we used an exponential soft contact

function. In the second step, the blank holder was fixed

in its current positions. This two-step procedure created

contact between the blank holder and the blank. In the

final step the punch was moved toward the blank

through a total distance of 80 mm. This step modeled

the actual drawing process.

Considering that this paper is mainly focused on the

theoretical analysis of the relationship between texture

components and earing behavior rather than on the

comparison of the difference between simulation and

experimental results, the Coulomb friction coefficient

was assumed as l¼ 0 to reduce computing time. In

various previous articles [10–12,24,25] where we had

studied the influence of different friction conditions

(l¼ 0–0.2) on the simulation results we repeatedly

Fig. 2. Schematic drawing showing the mapping of different texture

components on a mesh.

Fig. 3. (a) Finite element model set-up showing the geometry of the tools used in the simulations (mm as arbitrary units). (b) Mesh configuration. For

considering the orthotropic symmetry, only a quarter of the blank is employed which is modeled using 432 elements of type C3D8 and 80 elements of

type C3D6. The angular element number increases from the center to the border in order to reach a sufficient accuracy along the rim of the cup.
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found that changes of the friction coefficient had only

little influence on the relative ear height. We attributed

this observation to the fact that – different than in

classical J2 continuum simulations – nonuniform de-

formation and strain localization naturally arise in

polycrystals as a consequence of crystallographic slip.

Similar observations were earlier reported by D�eve et al.

[26] and Harren and Asaro [27].

In this study, we use a set of well known ideal texture

components with a set of given Euler angles as a basis,

namely, Cube (u1 ¼ 0°, / ¼ 0°, u2 ¼ 0°), S ðu1 ¼ 60°,

/ ¼ 32°, u2 ¼ 65°), Brass (u1 ¼ 35°, / ¼ 40°, u2 ¼ 0°),

Copper (u1 ¼ 90°, / ¼ 30°, u2 ¼ 45°), and Goss (u1 ¼
0°, / ¼ 45°, u2 ¼ 0°). The plasticity simulations are

then conducted with different combinations of them in

terms of their individual volume fraction and spherical

scatter width.

In a first set of simulations the individual ear profiles

were calculated separately for each of these components.

Owing to the orthorhombic sample symmetry each sin-

gle orientation has to be balanced by three additional

symmetrically equivalent orientations in order to cor-

rectly reproduce the response of the material in the

crystal plasticity finite element calculations. Conse-

quently, each of the symmetrical variants was assigned

one quarter of the volume of the original component.

For the Cube and Goss orientations the crystallographic

symmetry of these components with respect to the

starting sample coordinates reduces the required initial

equivalent variants to one and for the Copper compo-

nent to two.

In a second set of simulations the Cube and S com-

ponents were combined with the aim to reduce the ear

height of the drawn cup. The two components were se-

lected because they produce opposite earing and because

they are typical texture components in fcc metals with

high stacking fault energy [1–9,28,29]. We computed the

ear profiles of the different combinations as a function of

their volume fractions and spherical scatter widths. The

aim of this simulation series is the prediction of the op-

timum texture composition for minimum earing. Earing

is quantified in terms of the ear height and ear area

(Fig. 4). The ear height describes the difference between

the highest point on the rim and the lowest point on the

profile of the drawn cup. The ear area integrates the

entire surface above the lowest point on the rim.

In both simulation series the ear profiles were calcu-

lated with different values for the full width at half

maximum of the underlying spherical Gauss functions

ranging from 5° to 15°.

4. Results and discussion

4.1. Ear profiles of individual texture components

Fig. 5 shows the simulated ear profiles of the five

single texture components Cube, S, Brass, Copper, and

Goss. The simulations were conducted for perfect single

crystalline starting material, i.e., under the assumption

of 0° scatter about the main orientations prior to load-

ing. It must be underlined, though, that considerable

orientation scatter is generated during deformation, i.e.,

the specimens do not remain single crystalline. The use

of mm as a unit for the ear height is arbitrary like in all

finite element simulations and only scaled by the units

used for the description of the tool design (see Fig. 3(a)).

The ear shape of the Cube component reveals maxi-

mum ear height at the rolling and transverse directions
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Fig. 5. Ear profiles of individual texture components. Five texture components are selected and their final ear profiles can be grouped into two types

(a) 45°/135° type, such as S, Brass and Copper whose main ear peaks appear near 45° and 135° to the rolling direction, and (b) 0°/90° type, such as

Cube and Goss, whose ear peaks appear near the rolling and transverse directions.

Fig. 4. Earing is quantified in terms of the ear height and the ear area.

The ear height describes the difference between the highest point on the

rim and the lowest point on the profile of the drawn cup. The ear area

integrates the entire surface above the lowest point on the rim.
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with an ideal orthotropic symmetry. Compared to this

ear shape the maximum ear positions created by the

Goss texture component are shifted about 15° away

from those caused by the Cube single crystal towards the

transverse direction. In contrast to the Cube and Goss

orientations, the ear peaks of the S, Brass, and Copper

texture components appear at about 45°, 60°, and 30° to

the rolling direction, respectively. These predictions are

in accordance with earlier findings of ear shapes made

by other authors [1–9].

According to these data the five texture components

can be grouped into two types according to the shape

anisotropy after cup drawing, namely, into the 0°/90°

type (Cube and Goss) and the 45°/135° type (S, Brass

and Copper). The earing behavior between these two

groups of texture components is opposite which means

that earing minimization can be most likely achieved by

mixing them in a reasonable fashion.

4.2. Earing minimization by combining texture compo-

nents

Figs. 6(a) and (b) show the influence of a mixture of

the S and the Cube texture components on the ear shape

after cup drawing. The simulation results present the ear

profiles for different ratios of the volume fractions of the

two texture components. Fig. 6(a) shows that an opti-

mum profile is obtained for a combination of 62.75 vol%

of the S component and 37.25 vol% of the Cube com-

ponent in case that the orientational scatter width

amounts to 0° prior to elastic–plastic loading (combi-

nation of two originally perfect single crystals). Fig. 6(b)

reveals that this results applies for both, the ear height

and the ear area. Fig. 6(b) also demonstrates that the

dependence of earing in terms of height and area on the

texture composition reveals a steep change in the vicinity

of the earing minimum, i.e., small modifications in the

ratio of the volumes of the two texture components

entail a strong change in earing. This means that even

minor texture changes can lead to a remarkable opti-

mization or degradation of the ear profile. It is impor-

tant to note in this context that the ideal components

with 0° orientational scatter width, which characterize

the starting texture, develop during the simulation into

an array of similar orientations, each of which may

undergo individual reorientations according to the local

boundary conditions. It is the special advantage of the

texture component crystal plasticity finite element

method to take these individual local reorientation- and

strain-paths properly into account.

Fig. 7 illustrates the ear profiles and the geometry of

the samples initially equipped with a Cube component

(Fig. 7(a)), S component (Fig. 7(b)), and their optimum

combination (Fig. 7(c)) during cup drawing. It is obvi-

ous that the rim of the sample initially designed with a

combination of 62.75 vol% of the S component and

37.25 vol% of the Cube component reveals a much

smoother shape when compared to the results obtained

for the single crystals.

It is of some interest in this context to observe that

the optimum volume ratio between the S orientation

and the Cube orientation amounts to about 1.67:1

(62.75 vol%:37.25 vol%) rather than to 1:1. The reason

for an initial assumption that an optimum ratio between

the two texture components might amount to 1:1 was

suggested by Fig. 5 which shows that the ear profiles

created by the S and the Cube components are opposite

indicating the possibility of mutual compensation. The

fact that 1.67:1 and not 1:1 is the optimum ratio un-

derlines that the interaction of different texture compo-

nents is highly non-linear. It is also important to learn

from this ratio that the volume fraction of the S com-

ponent must obviously be much larger than that of the

Cube component in order to compensate for anisotropy.
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Fig. 6. Minimization of ear formation by mixing the S and Cube texture components. (a) Ear profiles for different ratios of S and Cube. (b)

Quantitative analysis of ear height and ear area. The simulation results show that the ear behavior can be minimized by mixing S and Cube texture

components at an optimum ratio of about 62.75 vol%/37.25 vol% (S/Cube). (a) Ear profiles (b) Quantitative analysis.
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This means that the Cube orientation has a much larger

effect on the overall anisotropy during deep drawing

than the S orientation.

4.3. Effect of the spherical scatter width on the ear profiles

Fig. 8 shows the effects of the initial spherical scatter

width of the texture components on the final ear pro-

files. Fig. 8(a) reveals for the Cube texture component

that an increase in the initial orientation scatter from

0° to 15° results in a decrease in the ear height from 19

to 14 mm. Fig. 8(b) shows the result obtained for an

increase in the initial orientation scatter for a combi-

nation of the Cube and the S components. Increasing

the orientation scatter from 0° to 15° entails a sub-

stantial drop in the roughness of the rim after drawing

(see also Fig. 9).

5. Conclusions

We used a texture component crystal plasticity finite

element method to investigate the influence of various

texture components and their combination on the earing

behavior of cup drawn aluminium samples. The fol-

lowing conclusions can be drawn from this study:

1. Ear peaks of the Cube and Goss texture components

appear at the rolling and transverse directions, while

the ears of the Copper, S and Brass orientations

occur at about 45° and 135° to the rolling direction.

2. Minimization of earing can be achieved by mixing the

Cube and S texture components. The optimum vol-

ume ratio between the two is S:Cube¼ 1.67:1.

3. Optimization of earing depends on both, crystallo-

graphic orientation and scatter width of the orienta-

tion components. As a rule earing decreases with

increasing spherical scatter width of the texture

components.

Fig. 9. Simulated quarter cup after drawing using 37.25 vol% Cube and

62.75 vol% S each with 15° spherical scatter (full width at half maxi-

mum).
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Fig. 8. Influence of the spherical full width at half maximum of the texture components on the ear profiles.(a) Cube component, (b) Cup containing

62.75 vol% S and 37.25 vol% Cube (with 0° and 15° spherical scatter (full width at half maximum)).

Fig. 7. Ear profiles during simulated cup drawing for discrete texture components (a) Cube, (b) S, (c) mixture of 37.25 vol% Cube and 62.75 vol% S.
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