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Accelerating the design of compositionally 
complex materials via physics-informed 
artificial intelligence

Dierk Raabe      , Jaber Rezaei Mianroodi   & Jörg Neugebauer     

The chemical space for designing materials is practically infinite. This 
makes disruptive progress by traditional physics-based modeling alone 
challenging. Yet, training data for identifying composition–structure–
property relations by artificial intelligence are sparse. We discuss 
opportunities to discover new chemically complex materials by hybrid 
methods where physics laws are combined with artificial intelligence.

New materials are crucial in two aspects. On the one hand, they enable 
disruptive leaps in civilization. Examples are early ceramics for pottery; 
bronze for agriculture; steels for machinery; cement for buildings; 
aluminium for aviation; titanium for spaceships; rare earth elements 
for magnets; semiconductors for computer chips; platinum-group 
metals for catalysts; and polymers for packaging and medicine. On 
the other hand, material production is the largest single source of 
greenhouse gas emissions, energy consumption and environmental 
pollution, a fact that forces us to entirely rethink the way we produce, 
use and recycle them1,2.

The drive towards ever-improving materials has led to their 
higher chemical complexity, as property improvement often requires 
tweaking the intrinsic and microstructure-dominated features by 
composition adjustment. Examples are chemically fine-tuned inter-
metallic phases in superalloys3–5, complex precipitation pathways 
in high-performance aluminium alloys6–8 or interfaces in advanced 
magnets9,10. Another challenge is the near atomic-scale blending of 
multiple elements in microelectronics, where the borders between 
product and material become blurred, such as in the 2 nm process in 
semiconductor manufacturing. Both trends enhance compositional 
complexity of materials and highly integrated systems: they are pre-
conditions for advanced product properties and open doors to new 
solid-state phenomena11–14. Yet, chemistry never comes alone: compo-
sitional complexity of materials translates to their microstructure15. 
Changes in the chemical composition affect many defect features, 
often with an exponential dependence: examples include changes in 
the solute decoration state and energy of the defects, drag forces act-
ing on them and the formation of new phases at defects. This means 
that changes in chemical complexity are linked to changes in micro-
structure complexity. The latter aspect is important because mate-
rials are practically never used in their thermodynamic equilibrium 
state, but in a transient state, equipped with a complex microstructure 

cosmos consisting of point defects, line defects (dislocations) and 
interfaces (Fig. 1).

The aim to predict structures and properties of materials in such 
a huge and uncharted chemical space with its multiple scales and vast 
cosmos of chemically decorated defects and resulting microstruc-
ture phenomena (Fig. 1) creates completely new types of challenges 
and opportunities that require disruptive changes in computational 
materials science16–21. Classical physics-based simulation approaches 
see their limits already in the first ‘simple’ steps, meaning, the quantita-
tive prediction of high-dimensional phase equilibria (Fig. 1a)22,23, not 
to mention the reliability of the simulations for the non-equilibrium 
microstructures and properties (Fig. 1b).

An additional constraint in this context is sustainability: while 
enhancing chemical complexity ever more is a tempting design route 
because it takes materials far into infinite composition and property 
spaces, it makes product disassembly and material recycling much 
harder, reducing the fitness of materials and products for a circular 
economy. Some high-entropy materials match or even outperform 
established materials10,24,25, but they often contain environmentally 
questionable elements, impairing their environmental footprint. This 
means that computational design of chemically complex materials has 
to balance opportunities for new discoveries with responsible synthesis 
and use of elements.

In this Perspective, we discuss the challenges when designing 
compositionally complex materials, examine the limitations of con-
ventional models and further discuss how artificial intelligence (AI) 
can help to guide the discovery of new chemically complex materials.

Physical and chemical complexity from massive 
chemical mixing
Materials have several dimensions of complexity, for example, in terms 
of their chemical composition, synthesis, processing and defects (Fig. 1).  
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Understanding complexity via physics-based 
modeling
The discovery of chemically complex materials often relies on trial and 
error, serendipity and phenomenological rules. Exceptions are tools 
that have heralded modern computational materials design such as 
density functional theory34–37 and statistical thermodynamics28,38–43.

Density functional theory simulations can be used to extract ener-
getic and certain structural features of materials, also under considera-
tion of thermal and magnetic effects, with high quantum mechanical 
fidelity. However, owing to the limited super-cell sizes, their ability 
to deal with the high-dimensional and symmetry-breaking chemical 
complexity of materials is limited and it is also doubtful that quantum 
computing will be capable of unleashing ab initio simulations for large 
complex systems in the near future (Table 1).

Tools such as molecular dynamics, in conjunction with accurate 
machine-learning-trained interatomic potentials, can be used to 
investigate larger systems that also involve defects, kinetics and 
chemical reactions in materials with moderately complex compo-
sitions44–54. Mean-field methods such as phase-field theory can use 
ab initio-informed energy landscapes and mobility coefficients 
to study microstructure formation55,56, opening the door towards 
the simulation of complex multi-physics and processing-related 
problems where multiple chemical elements are involved57. Multi-
physics and machine-learning-enhanced phase-field simulations 
are thus attractive for problems where several kinetic mechanisms 
compete in materials with complex chemical compositions and 
environments such as in corrosion, battery, catalysis and reduction 
processes58–60. Yet, these methods take a coarse-grained approxima-
tion of the energy associated with defects in terms of gradient terms, 
and their energetic fidelity depends on the quality of the approxima-
tion of the system energetics by the underlying Landau energy forms.  
On a more mean-field level, dislocation dynamics and crystal- 
plasticity models61–65 can be used to relate such microstructures 
that evolve in chemically complex materials to properties66. Phase-
field methods and crystal mechanical models are increasingly being 
combined in the same simulation tools67,68 and AI methods are used 
to accelerate them58,60,69–73.

Many features of materials can change substantially when multiple 
principal elements are blended together12,26,27. Table 1 compiles some 
of these aspects.

With only about 104 different types of synthetic materials used 
today, out of an almost infinite space of about 1080 potentially meaning-
ful chemical combinations, we learn that we stand at only the beginning 
of materials research in all its compositional complexity28,29. Nowadays, 
we have reliable data only for low-component number phase diagrams 
and even many allegedly ‘simple’ binary phase equilibria are not well 
understood, for instance, when magnetism is involved and/or complex 
low-temperature phase transformations occur, where experimental 
access is limited by kinetics. Therefore, the chemistry of materials 
deserves particular attention30, owing to its huge undiscovered space, 
profound influence on microstructure, properties and sustainability, 
and insufficient theoretical methods to study it for systems with more 
than three or four components.

Using more chemical elements in materials helps to realize so-
far-inaccessible thermodynamic, kinetic, structural and functional 
features and also leads to new local chemical interactions with the 
materials’ internal defects (its microstructure)31–33, an approach that 
enables the chemical and structural modification of defect-related 
properties (Table 1)26.

The use of multiple elements in materials allows for tuning not 
only their bulk properties but also their internal defects and surface 
features. The Gibbs adsorption isotherm makes a thermodynamic 
statement about the magnitude of defect stabilization when decorated 
by solutes in dilute cases, but it does not answer similar questions for 
multi-component systems when defects undergo complex atomic 
motif formation and chemical reconstructions.

A principle downside and topic that needs consideration in the 
context of chemically complex materials lies in their reduced recycla-
bility and the accumulation of (potentially harmful) impurity elements 
in waste streams that enter new materials when recycled1. While the 
scientific questions arising from the presence of multiple recycling-
related tramp elements in materials are in principle the same as those 
described in Table 1, life-cycle aspects must be considered as an addi-
tional set of constraints, rendering the task a system challenge.
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Fig. 1 | Chemical complexity influences microstructure complexity. a, View 
of a chemically complex material, where different types of atoms (indicated by 
the colored spheres) are mixed together in a crystalline solid solution, stabilized 
by configurational entropy. Computational studies on chemical complexity 
therefore often start with high-component thermodynamics and equilibrium 
phase diagrams. Mixing multiple elements in high fractions breaks the crystal 
symmetry locally, creates complex electronic states, leads to magnetic ordering 
effects, and introduces high distortions and potentially also short-range order, 
making such materials profoundly different from low-component alloys.  

b, Schematic view of lattice defect types in solids that are affected by 
compositional complexity: point defects (zero-dimensional (0D) defects), 
dislocations (one-dimensional (1D) defects) and interfaces (two-dimensional 
(2D) defects). The chemical and structural features of compositionally complex 
solid solutions affect the energies and kinetics of the lattice defects in them, 
thus altering the resulting microstructures that lend materials many of their 
properties such as strength or conductivity. Understanding and quantifying the 
link between chemical and structural complexity by using AI is one of the grand 
challenges for the design of compositionally complex solid solutions
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Many of the models sketched in this section use simplified approxi-
mations and rely on large numbers of variables and degrees of freedom 
when the material system and its processing grow in terms of chemical 
and structural complexity. The art of sensible modeling in this field 
thus lies in the task of making a model ‘as simple as possible but not 
simpler’. Yet, where to draw the line in ignoring complexity is often not 
clear and not guided by crisp rules.

A reliable measure for ‘permitted’ simplification is to examine 
whether a simulation method is capable of reproducing the ener-
getics of a system properly (at least in the targeted temperature and 
chemical potential regimes), such as matching portions of known 
phase diagrams, for instance. It is surprising how even frequently used 
and well-established bottom-up atomistic simulation methods based 
on using empirical potentials fail when it comes to reproducing Gibbs 
free-energy landscapes for multi-component systems. In the case of 
highly concentrated solid metallic solutions, this is probably due to 
their electronic and magnetic complexity as well as to short-range 
ordering phenomena74–77: when taking the well-known FeMnCrNiCo 
alloy as an example13, it includes all the strongest ferromagnetic and 
antiferromagnetic elements in one (metastable) solid solution. This 
means that not only the electronic ground states must be correctly 
captured under consideration of all possible magnetic states but also 
all entropy contributions (mixing, phonon, electron, magnetic)35,76. 
Most conventional empirical potentials do not have the functional 
flexibility to properly reproduce all these effects.

Interesting entropy-related features have not only been studied 
for metals but also for compositionally complex and high-entropy 
ceramics27,78–80. At first view, these materials would have been tradi-
tionally assumed to be more enthalpy dominated rather than entropy 
dominated, due to the strong covalent and ionic bonds and localized 
electrons, compared with the delocalized valence electrons in metals 
resulting in weaker bonds that enable intense element mixing. How-
ever, it was found that interesting mixing effects can be triggered in 
multi-component ceramics by disorder-induced charge fluctuations27. 
It was also suggested that configurational entropy effects play a role 
in the deviation from ordering on the anion sublattice, an effect which 
increases the compositional space for ceramics substantially.

While ab initio methods are principally able to describe any mate-
rial property, their huge computational costs limits them to rather 
small system sizes. Therefore, critical quantities are not or only very 
approximately accessible by direct ab initio calculations. For example, 
in contrast to the simulation of thermodynamic equilibrium condi-
tions, the role of system dynamics and reactions turns out to be compu-
tationally very costly. These limitations apply particularly to chemically 
complex materials, where constrained or local equilibrium calculations 
only predict certain aspects of interest, such as thermal expansion, 
stacking fault energy or interfacial cohesion. Also, properties that 
are related to the microstructure of the materials, such as strength, 
toughness, ductility, magnetic dynamics, thermoelectricity, reactivity 
and so on, cannot be captured by ab initio simulations alone. For the 

Table 1 | Complexity of materials with multiple principal elements (for example, high-entropy alloys) or impurity elements 
(for example, recycled alloys) and the role of computational materials science

Challenges in materials design Computational challenges and opportunities specific to multi-component and chemically 
complex materials

Characteristic bulk features
• Up to ten alloying and/or impurity elements
• Multiple (meta-)stable phases and phase transformations
• Crystal and amorphous structures
• Strong distortions and local crystalline symmetry-breaking
• Chemical ordering
• Segregation and heterogeneity across all scales
• Challenging synthesis, fabrication and processing
• Near-equilibrium or highly non-equilibrium synthesis 
pathways

Challenges
• Prediction of bulk phase energies and kinetics
• Prediction of short-range ordering
• Insufficient databases and training data, that is, how to do AI with sparse data
• Electronic and magnetic effects
• Configurational, vibrational, magnetic and electronic entropy
• Bridging discrete and continuum models
• Macroscopic response from electronic and atomistic principles
Opportunities
• Extraction of thermodynamic data from literature by AI
• Hybrid machine learning and active-learning methods for sparse data problems
• AI for bridging scales and accelerated solvers
• AI for bridging atomistic and continuum simulations
• AI-guided automatic and even autonomous high-throughput simulations

Lattice defects
• Solute-decorated point defects, line defects, interfaces and 
so on
• Microstructure patterning and gradients

Challenges
• Energies and kinetics of defects in chemical multi-component decorated state (due to the Gibbs 
adsorption isotherm)
• From individual solute-decorated defects to patterning and gradients
• Multi-physics interactions: chemistry, magnetism, mechanics
• Process and property simulation
Opportunities
• Surrogating defect features and patterning with AI
• Structure–chemistry–process–property linkage through AI
• New routes for stabilizing nanocrystalline structures and chemically decorated defects

Life cycle, longevity, sustainability
• Considering element scarcity, mining, refining, synthesis, 
processing and recycling
• Corrosion and longevity in harsh environments

Challenges
• Considering sustainability, material decay, harsh environments, element scarcity and life-cycle 
aspects in the design of chemically complex materials for a circular economy
• Reconciliation of material design for advanced properties with the goal of improving material 
sustainability
Opportunities
• Holistic cradle-to-grave simulations and AI methods for materials, processes and recycling
• High-component surface oxides and nitrides with better corrosion resistance
• New materials with enhanced abrasion, fatigue and stress-corrosion resistance

Increased amount of data
• Materials evolved in part over millennia
• Materials design often done via trial and error
• Dispersed knowledge (literature, patents, experience, 
communities)

Challenges
• Systematic and quality-controlled collection of knowledge
• No homogeneous or unified nomenclature, materials, processes and compositions
Opportunities
• Autonomous AI-based knowledge extraction from literature
• Autonomous AI-based material and process design
• AI guidance for material development
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same reason, the chemical search space accessible to ab initio methods 
remains limited. This means that interesting and even unexpected 
material behavior arising from chemical complexity might occur in 
search regions of currently totally unchartered terrain.

Hence, a dogmatic decision to use the computational design of 
chemically complex materials based on either ab initio methods or 
mean-field continuum models alone seems to be futile. Furthermore, 
better chemical models or higher-fidelity homogenization methods 
are typically developed slowly as in practice the choices for better 
models that can deal with high-component chemical complexity are 
sparse. The expected progress in this field is limited due to the often 
too high computational efforts and/or missing data to fit potentials.

Physics-based modeling of descriptors
Classical physics-based models for chemically complex materials usu-
ally start with characterizing the thermodynamic stability of the system 
and identifying its stable phases. The thermodynamic description goes 
through a combination of experimental observation of phase stability, 
fed as coefficients into Gibbs energy approximations, or obtained as 
quantum-level calculations of atomic interactions and energies81,82. 
An accurate thermodynamic model is necessary to discover possible 
phases, ordering and certain microstructure phenomena. This step 
is challenging for chemically complex materials owing to the curse of 
dimensionality, due to the exploding number of possible combina-
tions and multi-body interactions between the different atoms. Blends 
between established thermodynamic database approaches, AI and 
quantum computing are a promising avenue here.

Yet, materials are mostly not used in the equilibrium state, which 
makes an accurate description of kinetics necessary. In physics-
based models, this is done by dynamic simulations, such as molecu-
lar dynamics, kinetic Monte Carlo methods or phase-field theory. 
An efficient approach to performing such forward simulations for 
chemically complex materials is to focus on computationally easy-to-
calculate descriptors with high leverage on properties. An example 
from high-entropy alloys is to use density functional theory calcula-
tions of the stacking fault energy as the descriptor for phase stabil-
ity, twinning and martensitic phase transformations83–88. All these 
energetic features have a high influence on the mechanical proper-
ties of metallic alloys and can thus be well coupled to correspond-
ing mean-field simulations of the mechanical response89–91. This 
approach was, for example, successfully applied to design an alloy 
in which two high-entropy phases coexist and both of the coexisting 
metastable phases can undergo athermal phase transformations 
when mechanically loaded92,93.

Successful identification and simulation of physics-based descrip-
tors that correlate with microstructure evolution and properties are 
a promising approach that can be tackled not only with conventional 
models but also with AI94. When such descriptors capture the influ-
ence of chemical composition, they can be simulated starting from 
first principles and the resulting microstructure-dependent property 
predictions can be done by kinetic scale-hopping simulations that use 
them as central constitutive quantities, such as in analytical constitu-
tive79,95,96, phase-field58–60,97,98 and crystal-plasticity71–73,99–103 methods. 
The computational feasibility of these methods depends on the com-
plexity of the energetic landscape and the kinetic rules, which again—in 
the context of compositionally complex materials—are expected to 
be also complex.

Descriptors are a powerful tool to explore the compositional space 
without having to resolve the energetic–kinetic–microstructure–prop-
erty chain. However, their foundation is often phenomenologically 
based, which means that identifying appropriate descriptors requires 
careful and systematic experiments to identify the ones that reflect 
the bottleneck mechanisms of the specific problem addressed. In the 
future, it will be therefore important to have also methods available that 
allow to cover the entire simulation chain. This poses severe challenges 

for current computational methods when chemically complex materi-
als are considered.

New approaches are thus needed that can cope with higher 
degrees of compositional, structural and property complexity and at 
the same time can consider larger length and longer timescales, such 
as AI or hybrid AI methods coupled with physics-based models. In the 
next section, we comment on several emerging methods in AI and their 
applicability to these challenges.

AI for compositionally complex materials
AI in materials science
AI-based methods offer solutions to tackle the curse of compositional, 
structural and defect dimensionality. We refer to AI methods here as 
predictive modeling approaches that can learn from data. Data that can 
be used in AI can be of diverse origin: it can come from existing results, 
classical physics-based simulations or all the hidden information that 
exists in the often dilute, ill-defined, sparse and unfiltered body of 
literature, which in itself can be heterogeneous in quality. Hence, AI 
can learn from sufficient amounts of training data (for instance, by 
using large-scale nonlinear regression via artificial neural networks 
or Bayesian optimization)18,70,104–111; by way of autonomous literature 
analysis (for instance, via natural language processing)112–116; from deep 
learning69,98,117 (learning from example scenarios) or reinforcement 
learning98,118 (where penalty and reward-driven algorithms are used in 
a modeled training universe in which an AI gains experience) to name 
but a few important variants used in materials science.

It is likely that the different AI approaches may be suitable for 
different types of problems in materials science. This means that, for 
instance, the recognition of certain defect, chemical or damage pat-
terns in microscopic data (obtained from microscopy and spectros-
copy) in materials or trend analyses of material properties on the basis 
of large sets of published training data may in many cases be better 
achieved by neural networks (feature recognition, segmentation and 
latent space analysis)103,111,119, whereas systematic insights on existing 
synthesis procedures and processing methods and their respective 
influence on microstructures and properties might be better revealed 
by natural language processing114,115. However, for the latter approach to 
function, literature must have already reported the content of interest. 
For undiscovered materials, such as in the field of high-entropy alloys, 
text mining may not readily work. Yet, Pei et al.116 recently showed that 
certain high-entropy alloys could have been discovered earlier if natural 
language processing had been used to screen the literature for element 
affinity in solid solutions. This means that it may not be possible to 
discover new materials directly by text mining, but it could point at 
compositional regions of interest.

Opportunities offered by AI in the context of compositionally com-
plex materials lie particularly in the automated extraction of thermody-
namic data from literature and ab initio data, hybrid machine learning 
methods for sparse data problems, more efficient bridging of multiple 
scales and multi-physics problems, the use of AI as accelerated solvers, 
the bridging of electronic, atomistic and continuum simulations, and 
automatic and even autonomous combinatorial and high-throughput 
simulations, guided and decided by AI111. In addition, the combination 
of physics-based and AI-based methods, namely, hybrid methods, 
are increasingly developed for tackling those challenges. Examples 
are machine learning methods in conjunction with thermodynamic 
concepts117,120,121, using adaptive activation functions for physics-based 
neural networks122,123, or employing kernels and operators with func-
tional forms that come from physics124. These hybrid methods seem to 
be particularly promising for (chemically) complex materials47,51,121,125.

Conventional AI models
In the context of composition-dependent microstructure features, 
AI methods can particularly help to surrogate chemical defect deco-
ration features that stabilize, for instance, nanosized grains against 
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capillary-driven coarsening in high-temperature alloys126,127. Similar 
opportunities exist for the AI-based prediction of improved corro-
sion resistance, with respect to both the influence of the materials’ 
average chemical composition on the protective features of oxide 
or nitride layers, and pitting corrosion, where local oxidative attack 
prevails128–130. Using AI for predicting chemical defect stabilization 
and surface modification thus opens a pathway to novel types of struc-
ture–chemistry–process–property linkage predictions for chemically 
complex materials.

Another promising avenue for using AI is the reconciliation of the 
rich property cosmos offered by the materials sector with the goal of 
improving its sustainability, one of the biggest challenges of our gen-
eration, as material production is the largest greenhouse gas emitter 
and energy consumer on the planet1,131,132. In this context, a specific 
downside of chemically complex materials lies in their reduced recy-
clability, use of valuable elements and the accumulation of (potentially 
harmful) impurity elements in waste streams that enter new materials 
when recycled1. In a circular economy, every atom must ideally re-
enter the manufacturing chain and this should become a constraint 
in AI-based alloy design2,133. Also, high-entropy and similarly complex 
alloys not only enhance the number of chemical components used in 
them but also often contain rare elements. This means that research 
into complex chemical compositions of materials can be both a key 
enabler for advanced materials and a main future burden for the pur-
suit of a circular economy134,135. AI-based material development should 
therefore take constraints of sustainability into account, for example, 
by penalizing the use of harmful, rare or hard-to-recycle elements. Also, 
established life-cycle assessment methods could enter AI-based alloy 
development. Such a holistic and systemic approach to material devel-
opment might be able to answer trade-off questions such as whether 
it is better to develop new materials with higher chemical complexity 
(for example, to reduce vehicle weight), use chemically lean materials 
(and heavier vehicles) or replace chemical complexity (a conserved 
quantity) by microstructural complexity (a non-conserved quantity), 
if at all possible136.

Besides intentional elemental doping for targeted novel proper-
ties, there may be also unexpected opportunities lurking in chemically 
complex materials137,138. Examples are questions whether materials 
with an enhanced concentration of multiple elements might be more 
forgiving against unintentional impurities that enter through recycling, 
or whether they might be more resilient against harsh environmental 
attacks1,139–141. Such questions, where unintentional elemental intru-
sion poses new scientific challenges and opportunities, are currently 
emerging as a discipline referred to as the ‘science of dirty alloys’139.

Although there has been a sharp rise in the number of works on 
the application of AI in material science48,71,142–144, these are not yet in 
all cases readily suited for applications related to compositionally 
complex materials along the challenging lines described above. Purely 
data-driven AI methods, although effective in finding patterns, do not 
automatically make discoveries outside of the training data. Yet, this 
feature is important for material design, where particularly outliers of 
compositional trajectories might be more promising than mere trend 
projection. For this to work, suitable mechanism- and microstruc-
ture-sensitive descriptors must be identified145,146. If descriptor-based 
approaches are not available for the targeted design tasks, physics-
based AI coupled with domain knowledge seems to be a promising 
strategy (Fig. 2)44,48,73,147. Such coupled methods have the potential to 
largely accelerate physics calculations and fill the gaps in the often very 
sparse experimental data for compositionally complex materials52,54.

Hybrid methods
Hybrids between physics models and AI, suited for compositionally 
complex materials, come in different forms. One type of approach 
pursues a purely ‘physics based’ AI. This has the advantage of work-
ing with established functional forms known from materials physics 

and can be seamlessly blended with existing simulation tools. The 
shortcoming of this approach, however, is exactly this, namely, their 
deliberate restriction to functional forms that are simpler (or maybe 
too simple) compared with those accessible in AI. This would be a step 
back in computational material discovery efforts, as it unnecessarily 
discards the existence or pertinence of more complex mathemati-
cal relations behind composition–structure–property relations of 
chemically complex materials. Yet, the many nonlinearities, mecha-
nism interactions, microstructure features, phase states and high 
chemical dimensionality suggest that such complexity might be 
better captured when exploiting the advantages of traditional cor-
relative AI, without imposing ‘physics based’ limits at an early stage 
of the modeling.

In contrast, the use of purely correlative and data-driven AI has the 
opposite problem, meaning, it works with a functional dimensionality 
that is way too large for typical datasets available in materials science. 
Using known physical relations (for instance, from thermodynamic 
databases, density functional theory calculations or chemical trends) 
allows to reduce dimensionality without restricting functional flex-
ibility. Such hybrid approaches have been successfully developed and 
applied to discover novel compositionally complex alloys.

For example, an iterative hybrid active-learning AI model has 
recently been introduced that couples the advantages of physics-
based and correlative AI approaches: Rao et al.148 have suggested a 
fully integrated hybrid materials discovery strategy that combines 
AI, AI-guided experiments and density functional theory-based 
simulations of phase equilibria to solve the sparse data problem 
via an iterative approach in the form of an active-learning strategy. 
The approach was applied to accelerate the design of metallic high-
entropy Invar alloys (materials with small thermal expansion) in the 
form of a closed-loop workflow, integrating active learning, thermo-
dynamics simulations and experiments (Fig. 3). Foppa et al.149 used 
symbolic regression guided by sure-independence-screening and 
the sparsifying-operator approach to derive analytical expressions 
for the prediction of descriptors such as the lattice constant and 
the cohesive energy for modeling the bulk modulus of perovskites. 
Kaufmann et al.78 suggested an AI approach for the identification of 
thermodynamic and compositional features of multi-component 
disordered metal carbides, based on a random forests approach. They 
compared the values obtained by density functional theory simula-
tions with those from machine learning predictions and identified 
the entropy-forming tendency of 70 new ceramic materials, some 
of which were then validated.

An issue in using AI for designing chemically complex materials is 
their lower accuracy compared with conventional methods and their 
limited extrapolation capability. However, even a relatively inaccurate 
approach that respects physical laws and considers domain knowl-
edge in the form of a hybrid model can help to improve its predictive 
capability (Fig. 2). It can, for instance, include specific sustainability 
and/or thermodynamic constraints, allowing it to indicate interest-
ing compositional directions for a more detailed search. This means 
that albeit we cannot hope to accurately screen 1080 possibilities for 
material discovery and design purposes given our limited databases in 
materials science, we can scan subsets of the chemical space with less 
precise but fast AI methods to propose candidates for more accurate 
computational and combinatorial investigation. Automated data 
mining tools and active learning become also more important in this 
context104,150–154 (Fig. 3 and Table 1).

Identifying promising composition ranges where available data 
and literature reveal contradictions, unexpected outliers, or abrupt 
feature and property transitions for chemically complex materials 
are good starting points for such a divide-and-conquer strategy where 
hybrid and staggered approaches can be successful.

In this regard, access to data is crucial. This includes data qual-
ity, access to FAIR data (FAIR standing for findability, accessibility, 
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interoperability and reuse of digital assets)155 and data sharing. This 
should include commercial data that are typically not disclosed by 
private companies. If manufacturers expect to be part of the coming 

digital revolution in materials science and profit from digitalized ele-
ments of a circular economy, they should develop strategies to share 
data on the materials they develop, process, use and recycle.
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for a complex artificial neural network designed to surrogate a complex dataset. 
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typically included in the physics-based artificial neural network are typically 
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become trapped at a local minimum. A physics-based machine learning model 
that is trained on both loss landscapes is expected to find the global minimum  
of the loss landscape easier, as the optimization force from the physics loss  
is preventing the system from getting trapped in unphysical local minima.  
c, Schematic ternary phase diagram, where the strategy outlined in a and b has 
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A more general challenge of current AI approaches to the simula-
tion of chemically complex materials lies in the fact that they produce 
correlations, but not causality. AI has yet to prove that it can reveal cau-
sality, that is, so-far-undisclosed physics-based relationships between 
composition, microstructure and properties. Improving the latter with-
out giving up the former is a pending quest in AI as will be addressed in 
more detail below. Some recent AI approaches113,115,156,157 suggest that 
causality in material design and manufacturing could come to some 
extent from natural language processing. A pragmatic view of this could 
be that to predict something meaningful, all that is needed is correla-
tion between input and output. Understanding causality may please 
the materials scientists but it does not necessarily improve the predic-
tive power of the underlying methods. An example where AI produced 
results with high engineering significance and relevance for the case 
of the compositionally and structurally very complex superalloys was 
recently given by Conduit et al.106. In this study the authors trained an 
artificial neural network with experimental data and computational 
thermodynamic predictions, capable of discovering and optimiz-
ing novel variants of superalloys in a high-dimensional phase space 
considering multiple properties, including mechanical, physical and 
thermodynamic features, with a focus on the most critical aspects such 
as strength and corrosion resistance. This example showed that AI is 
capable of the training-based development and maturation of a very 
complicated material via correlation. For such advanced engineering 
materials as superalloys, this is in general hard to achieve with con-
ventional forward physics models (that is, through causality alone), 
which as a rule cannot readily cope with such complex alloys under 
consideration of their manufacturing processes, microstructures, 
mechanical properties and oxidation response.

Although correlative (empirical) material discovery via AI has 
therefore clearly earned its place in materials science, pretending that 
a shortcut by traditional AI methods readily solves the dimensionality 
problems in material discovery is a promise that is unlikely to be held. 
The reason is that the required massive training data that are needed 
for identifying composition–structure–property relations in most 
cases simply do not exist for such large composition, processing and 
property spaces. This means that the success of AI in other fields such 
as language analysis and pattern recognition is not easy to translate to 
computational materials science, owing to a lack of data for training 
and validation (that is, data not used for training).

Outlook
A few specific key questions and opportunities can be filtered from the 
aspects discussed in the previous sections (Fig. 4).

	(1)	 How can AI methods for such complex materials be trained with 
only sparse and often noisy data, a characteristic but problem-
atic feature in the field of materials science? The best approach 
seems to be the use of (1) existing thermodynamic and kinetic 
databases; (2) combinatorial high-throughput experimental 
methods to produce massive material libraries in conjunction 
with automated characterization and active-learning-guided ex-
periments158–162; (3) massive forward simulations; and/or (4) au-
tomated language processing and advanced word embedding 
methods112,113,150, to provide better databases and training sets.

	(2)	How can AI methods for the design of chemically complex al-
loys be combined in a sensible manner with physics-based 
models? Promising approaches in this context are data-driven 
surrogating of physical models58,163, physically informed neural 
networks164,165 and operator learning166,167. These methods could 
be used to accelerate the calculation of material response and 
properties. Even purely data-driven models have been shown to 
be able to extrapolate beyond the training data in terms of mi-
crostructure, mechanics, damage and topology70,71,104,143,168,169. 
Classical computational methods can be partially replaced by 
AI methods. These include the application of machine learning 

for atomistic simulations51,52,170,171, mesh-based models172 and 
the phase-field method173,174. The application of these methods 
for the simulation of compositionally complex materials could 
allow in the near future the exploration of material candidate 
spaces that are orders of magnitude larger than what is currently 
computationally accessible.

	(3)	What are suited descriptors to link complex chemical compo-
sition to properties? While simulation methods to relate the 
compositions and microstructures of chemically complex ma-
terials to properties are fairly well established, the identification 
of likewise suited descriptors from machine learning methods 
or hybrid methods has not yet been well studied. A number of 
approaches to ‘featurize’ the composition and material data 
have been already proposed175,176. However, composition-to-
property linkage requires much more information than only the 
composition. The heart of the problem is the disparate nature 
of the important data in the link from the composition to the 
property. These data could be qualitative (for example, corro-
sion resistance) or quantitative (for example, pitting potential), 
categorical (for example, alloy classes) or numerical (for exam-
ple, carbon concentration), discrete (for example, the number 
of elements) or continuous (for example, concentration of ele-
ments), and all with possible spatial (for example, microstruc-
ture inhomogeneity) and temporal (for example, temperature 
changes) variations. Furthermore, setting a predetermined vol-
ume and type for this information is not pertinent. For example, 
describing the process route of making new material and eval-
uating its properties typically takes a full-length publication, 
which might not fit into a predetermined set of composition 
and processing descriptors. Here natural language processing 
could be useful to featurize publications as a whole and extract 
those descriptors that might be suitable for machine learning 
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Fig. 4 | Different applications of data-driven and physics-informed AI for the 
modeling of compositionally complex materials. These include scale bridging 
through machine learning; text mining for data extraction from the vast trove of 
literature; identification and computation of easy-to-compute descriptors that 
strongly correlate with the targeted complex materials properties; surrogate 
modeling of more complex simulations to create digital twins that faithfully 
reproduce the response of the actual material; and material discovery through 
outlier exploration. ML, machine learning; DFT, density functional theory.
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tasks in an automatic fashion. This approach might evolve into 
one of the pillars for an autonomous AI-based material discov-
ery and design strategy, without much bias from an individual 
researcher, except, for defining, for instance, a specific desired 
target property.

	(4)	How can the vast existing phenomenological knowledge from 
the literature about complex materials be screened and ex-
ploited by automated data retrieval via using word embedding 
methods, considering practical limits such as copyright issues 
and restricted access, but also semantic challenges such as the 
very diverse nomenclatures and notations of materials and their 
compositions in the literature. Another important aspect is the 
heterogeneity in the information quality of papers regarding 
potentially relevant details, such as impurity content, process-
ing, homogenization, segregation and microstructure features 
of chemically complex materials, aspects that are often not so 
well documented in papers. Here particularly subtle effects aris-
ing from elements such as hydrogen, nitrogen and carbon are 
important, for instance, in the case of metallic high-entropy al-
loys. Such information can turn out to be vital particularly when 
it comes to the identification of reliable composition–struc-
ture–property relationships.

	(5)	What are suitable methods to avoid overlooking interesting out-
liers and ‘misfits’ in the huge composition space (considering 
also the many other complexity dimensions discussed above)? 
This is an important question as it may in many cases be par-
ticularly the outliers that could be sources for real discoveries, 
while in many cases the observation of expected and plausible 
compositional trends that can in principle also be inferred by 
an educated guess and from existing theory might be less excit-
ing research targets. This raises the question of what is the best 
hybrid method or machine learning approach to discover truly 
unknown and novel materials? A few examples of possible ap-
proaches of using machine learning for such material discovery 
pathways are already present in the literature177,178.

	(6)	A more fundamental question of using AI methods in this field 
is how to use it for guiding material discovery, meaning an ap-
proach that actually helps decide about the specific research 
directions. AI can even make autonomous decisions about 
promising chemical subspaces to screen for the unknown. This 
is connected to the deep-learning and active-learning strategies 
presented above. What remains to be further explored here is to 
use AI to guide the search into composition subspaces entirely 
by itself. This would have the charm of eliminating the biased 
researcher from the picture, a factor that can otherwise lead to 
blind spots.

	(7)	A weak point of AI in compositionally complex materials design 
is insufficient consideration of the roles of unplanned elemen-
tal intrusion from synthesis and recycling as well as the associ-
ated compositional variations between charges. This will affect 
material design in the coming decades and must be considered 
when it comes to (unwanted) complex compositions. Also, con-
straints from life-cycle assessment should be included, to make 
AI more holistic and system-oriented and capable of targeting 
alloying, synthesis and processing pathways that are much more 
sustainable than today.

	(8)	The high-entropy alloying approach has meanwhile been ex-
tended from metallic systems, which are well suited for the 
formation of massive solid solutions, owing to the nature of the 
metallic bond and the associated relevance of the configura-
tional entropy, to many other material classes. These include ce-
ramics, low-dimensional materials, thin films, semiconductors 
and coatings as well as polymers. For these material classes, the 
role of (configurational) entropy is often much less relevant as 
a guiding parameter or material descriptor to material design. 

Instead, other descriptors need to be identified when designing 
non-metallic compositionally complex materials through simu-
lations or AI.

	(9)	Irrespective of the many diverse AI approaches, no clear best-
practice method trends are yet discernible. The reason is that it 
has often not yet been properly analyzed and understood why 
certain AI methods are actually suitable for addressing certain 
challenges associated with complex materials or not. There are 
many black-box successes where AI has led to very convincing 
results and improved material discovery efficiency, but the ex-
act analysis of the reasons and success factors behind that are 
still pending. Deeper understanding of the reasons behind the 
efficiency of certain AI and hybrid methods might open inter-
esting pathways to custom designing such modeling tools for 
future material design.
Despite the challenges and caveats above, we believe that AI will 

play a more important role in helping us understand and design compo-
sitionally complex materials, especially driven by the fast development 
of AI algorithms, the availability of high-quality materials datasets and 
high-performance computing resources.
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