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Abstract: Steel production causes a third of all industrial CO2 emissions due to the use of carbon-based substances as reductants for iron ores,
making it a key driver of global warming. Therefore, research efforts aim to replace these reductants with sustainably produced hydrogen. Hy-
drogen-based direct reduction (HyDR) is an attractive processing technology, given that direct reduction (DR) furnaces are routinely operated
in the steel industry but with CH4 or CO as reductants. Hydrogen diffuses considerably faster through shaft-furnace pellet agglomerates than
carbon-based reductants. However, the net reduction kinetics in HyDR remains extremely sluggish for high-quantity steel production, and the
hydrogen consumption exceeds the stoichiometrically required amount substantially. Thus, the present study focused on the improved under-
standing of the influence of spatial gradients, morphology, and internal microstructures of ore pellets on reduction efficiency and metallization
during HyDR. For this purpose, commercial DR pellets were investigated using synchrotron high-energy X-ray diffraction and electron micro-
scopy in conjunction with electron backscatter diffraction and chemical probing. Revealing the interplay of different phases with internal inter-
faces, free surfaces, and associated nucleation and growth mechanisms provides a basis for developing tailored ore pellets that are highly suited
for a fast and efficient HyDR.
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1. Introduction

Steel is the dominant metallic alloy system, both in terms
of quantity and breadth of applications, serving in transporta-
tion,  civil  and  industrial  infrastructures,  construction,  and
safety. Steel also enables numerous clean energy and trans-
port  solutions,  such  as  soft  magnets  in  transformers,  and
structures  and gears  in  huge wind power plants.  More than
70% of the global raw iron production stems from blast fur-
naces (BFs), where CO is the major reductant [1]. The cur-
rent annual consumption of iron ores for this process amounts
to 2.3 billion tons,  producing about 1.32 billion tons of pig
iron [2], the historical name for the near eutectic iron–carbon
alloy tapped from BFs.  Each ton of steel  produced through
BFs and the  subsequent  basic  oxygen furnace route  creates
about 1.9 t of CO2 [3]. These numbers qualify iron- and steel-
making as the most staggering single sources of greenhouse
gas on earth, accounting for 7%–8% of the global CO2 emis-
sions  and  ~35% of  all  CO2 produced  in  the  manufacturing

sector  [1].  The  growth  rate  projections  suggest  a  further
massive increase in these emissions at least up to 2030 if no
sustainable  and  disruptive  technology  changes  are  imple-
mented  [4–5].  These  facts  challenge  current  technology
standards  and  operations,  which  are  against  the  goals  of
achieving carbon-lean steel production and drastically redu-
cing CO2 emissions by more than 80% by 2050 [6–8]. Thus,
iron- and steelmaking must be turned from one of the main
culprits  of global warming to key elements of a future sus-
tainable and circular economy.

Thus, alternative reduction methods with potentially net-
zero emissions for the extraction of iron from its ores have to
be  urgently  studied,  identified,  matured,  and  implemented
based on a thorough understanding of the underlying physic-
al and chemical mechanisms. Several strategies, including a
variety  of  solid,  molecular,  ionic,  proton,  or  electron-based
reductants, are conceivable, and the associated synthesis and
reduction methods, in part, can be combined (Fig. 1). An al-
ternative approach for large-scale and sustainable iron oxide 
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reduction is the use of hydrogen gas, its carriers [9], and their
plasma variants [10], provided that reducing agents (instead
of carbon) originate from sustainable or low-carbon sources
[11].  In  particular,  the  current  study  addressed  hydrogen-
based direct reduction (HyDR) with molecular hydrogen.

The  HyDR  involves  multiple  phase  transformations
[11–12].  At  temperatures  above  570°C,  HyDR  proceeds
along the sequence Fe2O3 (hematite) → Fe3O4 (magnetite) →
Fe(1−x)O  (wüstite)  → α-Fe  (BCC  iron)  or γ-Fe  (FCC  iron).
Meanwhile,  at  temperatures  below  570°C,  wüstite  is  no
longer thermodynamically stable, and the reduction reaction
proceeds in the order Fe2O3 → Fe3O4 → α-Fe. The overall re-
action is endothermic when using H2 as the reductant. Sever-
al  investigations  addressed  the  use  of  H2 as  a  reductant
[13–16]. These studies focused on the global reduction ther-
modynamics,  kinetics,  and  the  effect  of  process  parameters
(e.g., gas flow rate, temperature, and pressure) rather than on
the microscopic nucleation and growth mechanisms or gradi-
ents of these features through feedstock dimensions [17–23].
Pineau et al. studied the reduction of hematite and magnetite
[19−20]. The latter is an interesting option, given that mag-
netite ores can become a commercially attractive alternative
feedstock  when  new  furnace  types  and  reduction  methods
enter the market. In addition, their findings indicated that the
reaction  rate  was  controlled  by  the  growth  of  nuclei  and
phase boundary reactions. Piotrowski et al. [24–25] studied
the  reduction  kinetics  of  hematite  to  magnetite  and  wüstite
using  thermogravimetry  and  described  the  kinetics  using  a
classical  Avrami  nucleation  and  growth  model.  Patisson’s
group  [4,26]  developed  detailed  models  of  the  mesoscale
structure of the feedstock material, accounting for the role of

the granularity of pellets. Bonalde et al. [27] studied the re-
duction of Fe2O3 pellets with high inherited porosity and ex-
posed to gas mixtures of H2 and CO. They concluded that the
interface reactions and oxygen diffusion acted as competing
processes during the first reduction stage and the internal gas
diffusion as a rate-controlling step during the last stage. One
assumption  of  their  model  was  that  the  phase  boundary
moved toward the center of pellets and that the oxide feed-
stock material had neither porosity nor delamination cracks.
However, this assumption does not fully agree with the find-
ings reported in the recent literature [9]. Hence, considering
more details about the pellet defect structures (such as inter-
faces,  cracks,  pores,  and  dislocations)  at  the  microscopic
scale and their spatial gradient at the mesoscopic scale is im-
portant to understand the reduction kinetics and metal yield
[4].

The present investigation aimed to gain further insights in-
to the influence of pellet morphology and its internal micro-
structure  on  the  overall  reduction  efficiency  and  metalliza-
tion. For this purpose, commercial direct reduction (DR) pel-
lets  were  investigated  using synchrotron high-energy X-ray
diffraction  (HEXRD)  and  scanning  electron  microscopy  in
conjunction with electron backscatter diffraction (EBSD) and
energy-dispersive X-ray spectroscopy (EDX). This approach
revealed  the  microstructural  morphology  and  spatial  gradi-
ents of the phase transformations during the HyDR and the
interplay of different phases with the internal interfaces. The
obtained results  can guide the development  of  next-genera-
tion reactors and pellet feedstock that are better suited for a
fast and efficient HyDR to make ironmaking affordably car-
bon free. 
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Fig. 1.    Pathways and combinations for melting scraps and reducing iron oxide lump ores, pellets, or fines that are conceivable when
using a wide range of reductants and aggregate states.
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2. Experimental

We investigated the role of pellet morphology and micro-
structure in the reduction kinetics of the last and most import-
ant stage, i.e., from wüstite to iron. A special emphasis was
placed  on  the  quantitative  mapping  of  the  heterogeneity  of
reduction and radial  gradients in the reduction kinetics of a
partially reduced pellet. For this purpose, we used the same
commercial DR hematite pellets as in a preceding study [9].
The  pellet  had  a  diameter  of  about  11  mm and  a  chemical
composition  of  0.36wt%  FeO,  1.06wt%  SiO2,  0.40wt%
Al2O3,  0.73wt%  CaO,  0.57wt%  MgO,  0.19wt%  TiO2,
0.23wt% V, 0.10wt% Mn, and Fe2O3 in balance. The pellet
also contained traces of P, S, Na, K, V, and Ti. The pellet was
isothermally exposed to pure hydrogen with a constant flow
rate of 0.5 L/min at 700°C in a thermogravimetric configura-
tion [28]. The mass loss of the pellet was continuously mon-
itored  by  the  thermal  balance  during  the  reduction  experi-
ment. The reduction degree R was determined from the ex-
perimental  mass  loss  divided  by  the  theoretical  mass  loss,
with the hematite in the pellet considered to be fully reduced
into iron.

The phase distribution along the radius of the partially re-
duced pellet was characterized by synchrotron HEXRD. For
this purpose, a disk sample with a thickness of ~2 mm was
sliced from the center of the spherical pellet using a diamond
wire  saw.  HEXRD measurements  were  conducted in  trans-
mission mode at  the  beamline  P07 (High Energy Materials
Science)  of  PETRA  III  in  Deutsches  Elektronen-Synchro-
tron. The beamline was operated with a fixed beam energy of
~100  keV,  and  the  corresponding  wavelength  of  the  X-ray
beam was 0.0124 nm. The probing beam size was 0.5 mm ×
0.5  mm.  The  Debye–Scherrer  diffraction  rings  were  recor-
ded  by  an  area  detector  (PerkinElmer  XRD1621USA)  and
integrated by the Fit2D software [29]. The phase fraction was
calculated based on the Rietveld refinement method using the
MAUD software [30]. The local microstructure was further

analyzed using secondary electron imaging, EBSD, and cor-
relative  EDX in  scanning  electron  microscopy  (SEM).  The
step size for EBSD measurement was 50 nm. The acquired
EBSD and EDX data were analyzed using the OIM AnalysisTM

V8.6 software package. 

3. Results 

3.1. Kinetics  of  DR  of  hematite  pellet  at  700°C  under
hydrogen atmosphere

Fig. 2 presents the experimentally observed reduction kin-
etics in terms of the reduction degree for the HyDR of com-
mercial  hematite  pellets.  The  data  are  comparable  to  those
shown  in  our  preceding  work  [9]  and  the  results  of  other
groups [4,21]. The reduction rates of the first two reduction
steps,  i.e.,  from  hematite  (Fe2O3)  to  magnetite  (Fe3O4)  and
from  magnetite  to  wüstite  (Fe(1−x)O),  were  high  at  about
0.5 ×10−3–1.8 × 10−3 s−1 (Fig. 2(b)). The wüstite reduction to
α-iron  (α-Fe)  started  considerably  slow,  at  about  0.6  ×
10−3 s−1, and slowed down continuously toward the end of the
redox reaction. The reduction degree reached 95% after the
reduction for about 37 min and 98% after 52 min, indicating
that the reduction in this stage was extremely sluggish, and
complete metallization was not fully obtained. The analysis
and discussion of the individual kinetic steps and the roles of
some of the underlying microstructures, nucleation, transport,
and growth mechanisms have been recently studied by using
SEM and atom probe tomography [9] and will thus not be re-
peated in detail here.

The  most  common  feature  of  all  these  sequential  phase
transformation steps during this redox reaction is the gradual
deceleration of the transformation rate during the transform-
ation within the same phase regime. An important reason for
this was discovered in the pellet  microstructure.  During the
early stages of individual phase transformations, the material
showed  a  very  rich  density  of  lattice  defects,  in  particular
high porosity (due to the gradual mass loss), delamination at

 

0 0.2 0.4 0.6 0.8 1.0
0

0.5

1.0

1.5

2.0

R
ed

u
ct

io
n
 r

at
e,

 (
d
R

/d
t)

 /
 (

1
0

−3
 s

−1
)

R
th

 (
W

) =
 0

.3
33

R
th
 (

M
) 

=
 0

.1
1
1

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1.0

Time / min

Rth (W) = 0.333

Rth (M) = 0.111

(a) (b)

R
ed

u
ct

io
n
 d

eg
re

e,
 R

Reduction degree, R

Fig. 2.    (a) Reduction degree in terms of mass change as a function of time and (b) reduction rate (that is, the first derivative of the
reduction degree) as a function of reduction degree for a commercial DR hematite pellet. Reduction in a static bed was conducted un-
der pure hydrogen gas at a flow rate of 0.5 L/min at 700°C. The dotted marker line Rth(M) at the reduction degree of 0.111 indicates
the theoretically expected reduction from hematite to magnetite, and line Rth(W) at 0.333 denotes the one from magnetite to wüstite,
according to the stoichiometry of the phases. The specimen studied here for radial-gradient effects was obtained after an exposure
duration of 30 min.
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the hetero-interfaces,  and cracking (due to  the high-volume
mismatch  between  the  adjacent  phases  and  the  resulting
mechanical stresses). Another important aspect was that the
pellets  contained a  high-volume fraction of  inherited pores.
This  feature  facilitated  rapid  outbound  mass  transport  (of
oxygen)  and the  removal  of  water  from these  surface  reac-
tion fronts.  Thus,  rapid nucleation and growth were always
enabled  close  to  these  internal  free  surfaces,  specifically  at
the  beginning  of  the  reduction.  However,  with  further  pro-
gress of the reaction, the remaining oxide regions became in-
creasingly surrounded by the reduction products. As the re-
maining volume became smaller and highly dispersed, con-
siderably  fewer  lattice  defects  were  directly  connected  to
them as pathways for rapid diffusion. Thus, toward the end of
these reduction steps, the small remaining oxide regions were
less  frequently  in  contact  with  delamination  and  cracking
features.  The  remaining  oxide  regions  were  surrounded  by
denser reaction products that impeded oxygen removal. 

3.2. Through-pellet  heterogeneity  of  microstructures
during HyDR at 700°C

Fig. 3 presents an overview of the main differences in the

microstructure,  phase  composition,  and  porosity  probed  by
SEM and HEXRD along the radius of a hematite pellet that
was reduced with hydrogen at 700°C after an exposure peri-
od of 30 min. The results revealed a gradient in microstruc-
ture,  porosity,  and  phases  between  the  near-surface  and  in-
terior regions of the pellet.

The  pellets  are  granular  agglomerates  consisting  of
sintered polycrystalline substructure units that are hierarchic-
ally  stacked  together  with  large  pore  regions  among  them
(e.g., the visible pores in Fig. 3(a) and the large pores among
the sintered substructure units in Fig. 3(b)–(d)). These gener-
al  aspects  of  pellet  morphology,  the  granular  substructure,
and their role on reduction kinetics were studied in detail in
the papers of Patisson’s group [4,31–32] and Kim et al. [9].
In the near-surface regions of the pellets, oxygen can rapidly
diffuse outbound either toward the outer free surface of the
pellet  or the adjacent free volume in the form of pores that
were  inherited  from  the  pelletizing  process.  On  these  free
surfaces, oxygen can combine with hydrogen to form water.

Another  kinetically  relevant  factor  is  that  hydrogen  in-
trudes from the outer free pellet surfaces, and as a result, the
outer  regions  are  naturally  the  ones  reduced  most  rapidly.
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Fig.  3.      Overview of  the  microstructure,  phase  fractions,  and porosity  along the  radius  of  a  hematite  pellet  reduced at  700°C for
30 min with pure hydrogen, probed by SEM and synchrotron HEXRD. (a) SEM overview of the pellet structure between the surface
and center regions. Magnified SEM images of the microstructures in (b) the near-surface region, (c) the region ~3 mm below the sur-
face, and (d) the center region of the pellet. (e–f) Bulk HEXRD analysis of the spatial distribution of phase constituents along the pel-
let radius (probing volume of 0.5 mm × 0.5 mm × 2 mm).
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This basic kinetic scenario is supported by the microstructure
gradient  along  the  pellet  radius  quantitatively  measured  by
HEXRD (Fig. 3). The surface area of the pellet revealed the
highest metallization degree of 88.3vol% α-iron, with the re-
maining small fractions consisting of wüstite (5.6vol%) and
magnetite (6.1vol%). Conversely, the metallization dropped
to 15.1vol% α-iron in the region about 3 mm below the pellet
surface, with large portions of the remaining iron oxides, i.e.,
78.0vol% wüstite and 6.9vol% magnetite. No significant dif-
ference was observed in the phase fractions in the center re-
gion  of  the  pellet  (83.2vol%  wüstite,  13.2vol%  magnetite,
and 3.6vol% α-iron) compared with the region about 3 mm
below the pellet surface. This HEXRD result indicated a very
drastic difference in the reduction rate between the near-sur-
face regions of the pellet and its interiors. 

3.3. Local microstructure

Fig. 4 shows the microstructure and phase topology in a
region about 2 mm below the surface of the partially reduced
pellet  (within  the  topochemical  interface  of  the  FeO → Fe
transition).  The  reduced  iron  was  visible  in  these  backs-
cattered  electron  (BSE)  images  due  to  its  bright  contrast,
whereas wüstite appeared in a darker gray contrast. The black
regions are the pores that were inherited from pellet sintering
(between iron or oxide particles) and formed due to mass loss
during the reduction process (within iron or oxide particles).
The  important  microstructure  features  at  this  last  reduction
stage (i.e., from wüstite to iron) will be discussed in this section.

The micrographs shown in Fig. 4 revealed several funda-
mental  features  that  are  characteristics  of  the  entire  HyDR
process when using such pellets. One important feature was
that all of the iron formed adjacent to the free surfaces. This
feature  matched  the  kinetic  expectations  regarding  the  fast
hydrogen  intrusion  due  to  gaseous  surface  diffusion  along
these free volume regions and the fast removal rate of oxy-
gen  at  the  internal  interfaces,  where  water  was  formed and
stored. At the beginning of the reduction, hydrogen ingress,
oxygen removal, and the recombination of the hydrogen and
oxygen into water occurred only in the large percolating pore
regions inherited from the pelletizing process. However, sev-
eral  of  these  pores  evolved  during  the  gradual  removal  of
oxygen  during  the  reduction.  This  phenomenon  can  be  ob-
served in terms of the evolving nanoscale porosity inside the

wüstite region (Fig. 4(b)). With the ongoing gradual removal
of oxygen, these pores further grew and locally recombined
into larger ones over the course of the reduction.

The  nucleation  barrier  for  the  formation  of  iron  is  also
likely  smaller  on  the  free  surface  than  in  the  interior.  This
condition is due to (1) the heterogeneous nucleation advant-
age,  in  which  a  portion  of  the  required  interface  energy  is
already provided by these inner open surfaces and (2) the re-
laxation of  elastic  stresses  upon iron nucleation on the  sur-
face. Owing to the large volume difference between iron and
wüstite (more than 40%) [33], the latter aspect was assumed
to  have  a  substantial  energetic  influence  on  the  nucleation
barrier.  When  considering  the  associated  elastic  misfit
stresses in the calculation of the required nucleation energies
(which is expected in the gigapascal range if no plastic relax-
ation occurs)  [34],  the surface nucleation barriers  for  form-
ing iron are substantially lower than those in the interior.

Another important microstructure feature is that some of
the remaining inner wüstite regions became increasingly en-
capsulated  by  iron.  A  limited  number  of  delamination  fea-
tures  and  pores  were  observed  at  the  hetero-interfaces
(Fig.  4).  This  behavior  was  also  revealed  by  the  phase  and
composition maps shown in Fig. 5. The consequence of this
composite phase topology is that the outbound oxygen trans-
port must proceed through the surrounding bulk iron regions.
As a result, the last reduction stages were relatively slow, and
the reduction rate continuously dropped (Fig. 2) [9]. Such a
microscopic  core-shell  behavior  was  different  from  the  re-
duction behavior in the early stage of  wüstite  to iron trans-
ition,  in  which  numerous  delamination  features  were  ob-
served at the wüstite/iron hetero-interfaces [9]. 

4. Discussion

The results revealed a large difference in the reduction rate
and  metallization  along  the  pellet  radius.  This  observation
raises concerns not only regarding the overall sluggish reduc-
tion rate due to these gradient  effects  but  also the low effi-
ciency obtained with the use of hydrogen. The decarboniza-
tion  of  the  global  steel  industry  with  the  aid  of  techniques,
such as the HyDR, is reasonable only when green hydrogen
is used. This aspect means that the beneficial total efficiency
and life-cycle assessment regarding the carbon footprint  re-
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quire  hydrogen  produced  by  sustainable  energy  sources,
making it a very expensive product. Thus, hydrogen should
be used in such reduction processes as efficiently as possible.
In addition, an assessment of the total efficiency of the Hy-
DR processes requires not only the consideration of the total
energy balance but also the total efficiency of hydrogen con-
sumption as an essential cost and sustainability factor.

The large through-pellet gradient of reduction kinetics ob-
served in this study suggests the reconsideration of the suit-
ability of the current commercial pellet design or process op-
timization  for  HyDR  processes.  In  particular,  given  the
unique  physical  properties  of  molecular  hydrogen,  i.e.,  its
smaller  molecular  size  and  lower  viscosity  compared  with
CO or CH4, the gas transport phenomena in the HyDR can be
very different from those in processes with carbon-based re-
ductants. Thus, further studies will be performed to assess ex-
perimentally and theoretically the effect of pellet size, poros-
ity,  and  microstructure  on  the  gaseous  percolation.  In  this
case,  the  improved  characterization  of  porous  structures  is
highly needed to reveal the three-dimensional connectivity of
pores.  This  information is  important  to disentangle the per-
colation paths. With the further help of fluid dynamic simula-
tion,  the  underlying  gas  transport  phenomena  can  be  better
understood. The gained knowledge will allow for the know-
ledge-based pellet design, which will enable the acceleration
of the overall reduction kinetics in HyDR processes. 

5. Conclusion and outlook

In  this  study,  we  quantitatively  investigated  the  spatial
gradient of the microstructure of a partially reduced commer-
cial  hematite  pellet  and  its  influence  on  reduction  kinetics

during the HyDR. The microstructural analysis along the pel-
let radius revealed the strong heterogeneity of the reduction
rate. The surface region of the pellet showed a high metalliz-
ation of 88vol% α-iron, whereas the center region of the pel-
let  contained about 4vol% α-iron. The local microstructural
analysis further suggested that the outbound diffusion of oxy-
gen was substantially delayed not only in the center areas of
the pellets but also in the sub-surface zones because the re-
maining wüstite islands were encapsulated by iron. In addi-
tion,  the  observed  abundance  of  defect-mediated  transport
pathways for fast oxygen diffusion is insufficient to warrant
more homogeneous and rapid reduction kinetics. Further ex-
perimental and fluid dynamic simulations should be conduc-
ted to better understand the effect of pellet size, porosity, and
microstructure on gaseous percolation. The current findings
can provide guidance for the optimization of pellets in terms
of size, porosity, and microstructure to meet the demands of
fast and efficient HyDR. 
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