D. Raabe, Journal Publications

Dierk Raabe, Publications
Publication List Dierk Raabe Oct 2019.pd[...]
PDF-Dokument [783.3 KB]

 

Dierk Raabe Publications

Dierk Raabe, Publications

[1] L. Abdellaoui, S. Zhang, S. Zaefferer, R. Bueno-Villoro, A. Baranovskiy, O. Cojocaru-Mirédin, Y. Yu, Y. Amouyal, D. Raabe, G.J. Snyder, C. Scheu, Density, distribution and nature of planar faults in silver antimony telluride for thermoelectric applications, Acta Mater. 178 (2019) 135–145. doi:10.1016/j.actamat.2019.07.031.
[2] H. Aboulfadl, J. Deges, P. Choi, D. Raabe, Dynamic strain aging studied at the atomic scale, Acta Mater. 86 (2015) 34–42. doi:10.1016/j.actamat.2014.12.028.
[3] A. Alankar, P. Eisenlohr, D. Raabe, A dislocation density-based crystal plasticity constitutive model for prismatic slip in α-titanium, Acta Mater. 59 (2011) 7003–7009. doi:10.1016/j.actamat.2011.07.053.
[4] A. Alankar, D.P. Field, D. Raabe, Plastic anisotropy of electro-deposited pure α-iron with sharp crystallographic <1 1 1>// texture in normal direction: Analysis by an explicitly dislocation-based crystal plasticity model, Int. J. Plast. 52 (2014) 18–32. doi:10.1016/j.ijplas.2013.03.006.
[5] A. Al-Sawalmih, C. Li, S. Siegel, H. Fabritius, S. Yi, D. Raabe, P. Fratzl, O. Paris, Microtexture and chitin/calcite orientation relationship in the mineralized exoskeleton of the american lobster, Adv. Funct. Mater. 18 (2008) 3307–3314. doi:10.1002/adfm.200800520.
[6] P.H.O.M. Alves, M.S.F. Lima, D. Raabe, H.R.Z. Sandim, Laser beam welding of dual-phase DP1000 steel, J. Mater. Process. Technol. 252 (2018) 498–510. doi:10.1016/j.jmatprotec.2017.10.008.
[7] R. Aparicio-Fernández, H. Springer, A. Szczepaniak, H. Zhang, D. Raabe, In-situ metal matrix composite steels: Effect of alloying and annealing on morphology, structure and mechanical properties of TiB 2 particle containing high modulus steels, Acta Mater. 107 (2016) 38–48. doi:10.1016/j.actamat.2016.01.048.
[8] R. Aparicio-Fernández, A. Szczepaniak, H. Springer, D. Raabe, Crystallisation of amorphous Fe – Ti – B alloys as a design pathway for nano-structured high modulus steels, J. Alloys Compd. 704 (2017) 565–573. doi:10.1016/j.jallcom.2017.02.077.
[9] A. Ardehali Barani, D. Ponge, D. Raabe, Refinement of grain boundary carbides in a Si-Cr spring steel by thermomechanical treatment, Mater. Sci. Eng. A. 426 (2006) 194–201. doi:10.1016/j.msea.2006.04.002.
[10] S.G. Ayodele, D. Raabe, F. Varnik, Lattice Boltzmann modeling of advection-diffusion-reaction equations: Pattern formation under uniform differential advection, in: Commun. Comput. Phys., 2013: pp. 741–756. doi:10.4208/cicp.441011.270112s.
[11] S.G. Ayodele, D. Raabe, F. Varnik, Shear-flow-controlled mode selection in a nonlinear autocatalytic medium, Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 91 (2015) 1–5. doi:10.1103/PhysRevE.91.022913.
[12] S.G. Ayodele, F. Varnik, D. Raabe, Effect of aspect ratio on transverse diffusive broadening: A lattice Boltzmann study, Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 80 (2009) 1–9. doi:10.1103/PhysRevE.80.016304.
[13] S.G. Ayodele, F. Varnik, D. Raabe, Lattice Boltzmann study of pattern formation in reaction-diffusion systems, Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 83 (2011) 1–14. doi:10.1103/PhysRevE.83.016702.
[14] S. Balachandran, J. Orava, M. Köhler, A.J. Breen, I. Kaban, D. Raabe, M. Herbig, Elemental re-distribution inside shear bands revealed by correlative atom-probe tomography and electron microscopy in a deformed metallic glass, Scr. Mater. 168 (2019) 14–18. doi:10.1016/j.scriptamat.2019.04.014.
[15] A.A. Barani, F. Li, P. Romano, D. Ponge, D. Raabe, Design of high-strength steels by microalloying and thermomechanical treatment, Mater. Sci. Eng. A. 463 (2007) 138–146. doi:10.1016/j.msea.2006.08.124.
[16] A.A. Barani, D. Ponge, D. Raabe, Strong and Ductile Martensitic Steels for Automotive Applications, Steel Res. Int. 77 (2006) 704–711. doi:10.1002/srin.200606451.
[17] C. Baron, H. Springer, D. Raabe, Combinatorial screening of the microstructure–property relationships for Fe–B–X stiff, light, strong and ductile steels, Mater. Des. 112 (2016) 131–139. doi:10.1016/j.matdes.2016.09.065.
[18] C. Baron, H. Springer, D. Raabe, Efficient liquid metallurgy synthesis of Fe-TiB2 high modulus steels via in-situ reduction of titanium oxides, Mater. Des. 97 (2016) 357–363. doi:10.1016/j.matdes.2016.02.076.
[19] C. Baron, H. Springer, D. Raabe, Effects of Mn additions on microstructure and properties of Fe–TiB 2 based high modulus steels, Mater. Des. 111 (2016) 185–191. doi:10.1016/j.matdes.2016.09.003.
[20] C. Baron, H. Springer, D. Raabe, Development of high modulus steels based on the Fe – Cr – B system, Mater. Sci. Eng. A. 724 (2018) 142–147. doi:10.1016/j.msea.2018.03.082.
[21] C. Bartels, D. Raabe, G. Gottstein, U. Huber, Investigation of the precipitation kinetics in an A16061/TiB2 metal matrix composite, Mater. Sci. Eng. A. 237 (1997) 12–23. doi:10.1016/S0921-5093(97)00104-4.
[22] A. Bastos, S. Zaefferer, D. Raabe, Three-dimensional EBSD study on the relationship between triple junctions and columnar grains in electrodeposited Co-Ni films, in: J. Microsc., 2008: pp. 487–498. doi:10.1111/j.1365-2818.2008.02008.x.
[23] A. Bastos, S. Zaefferer, D. Raabe, C. Schuh, Characterization of the microstructure and texture of nanostructured electrodeposited NiCo using electron backscatter diffraction (EBSD), Acta Mater. 54 (2006) 2451–2462. doi:10.1016/j.actamat.2006.01.033.
[24] A. Bastos, S. Zaefferer, D. Raabe, Orientation Microscopy on Nanostructured Electrodeposited NiCo-Films, Adv. Mater. Res. 15–17 (2009) 953–958. doi:10.4028/www.scientific.net/amr.15-17.953.
[25] S. Basu, Z. Li, K.G. Pradeep, D. Raabe, Strain rate sensitivity of a TRIP-assisted dual-phase high-entropy alloy, Front. Mater. 5 (2018) 1–10. doi:10.3389/fmats.2018.00030.
[26] M. Belde, H. Springer, G. Inden, D. Raabe, Multiphase microstructures via confined precipitation and dissolution of vessel phases: Example of austenite in martensitic steel, Acta Mater. 86 (2015) 1–14. doi:10.1016/j.actamat.2014.11.025.
[27] M. Belde, H. Springer, D. Raabe, Vessel microstructure design: A new approach for site-specific core-shell micromechanical tailoring of TRIP-assisted ultra-high strength steels, Acta Mater. 113 (2016) 19–31. doi:10.1016/j.actamat.2016.04.051.
[28] J.T. Benzing, J. Bentley, J.R. McBride, D. Ponge, J. Han, D. Raabe, J.E. Wittig, Characterization of Partitioning in a Medium-Mn Third-Generation AHSS, Microsc. Microanal. 23 (2017) 402–403. doi:10.1017/s1431927617002690.
[29] J.T. Benzing, A. Kwiatkowski da Silva, L. Morsdorf, J. Bentley, D. Ponge, A. Dutta, J. Han, J.R. McBride, B. Van Leer, B. Gault, D. Raabe, J.E. Wittig, Multi-scale characterization of austenite reversion and martensite recovery in a cold-rolled medium-Mn steel, Acta Mater. 166 (2019) 512–530. doi:10.1016/j.actamat.2019.01.003.
[30] J.T. Benzing, W.A. Poling, D.T. Pierce, J. Bentley, K.O. Findley, D. Raabe, J.E. Wittig, Effects of strain rate on mechanical properties and deformation behavior of an austenitic Fe-25Mn-3Al-3Si TWIP-TRIP steel, Mater. Sci. Eng. A. 711 (2018) 78–92. doi:10.1016/j.msea.2017.11.017.
[31] J.T. Benzing, Y. Liu, X. Zhang, W.E. Luecke, D. Ponge, A. Dutta, C. Oskay, D. Raabe, J.E. Wittig, Experimental and numerical study of mechanical properties of multi-phase medium-Mn TWIP-TRIP steel: Influences of strain rate and phase constituents, Acta Mater. 177 (2019) 250–265. doi:10.1016/j.actamat.2019.07.036.
[32] H.H. Bernardi, H.R.Z. Sandim, B. Verlinden, D. Raabe, Recrystallization of niobium single crystals deformed by ECAE, in: Mater. Sci. Forum, 2007: pp. 125–130. doi:10.4028/www.scientific.net/msf.558-559.125.
[33] T.R. Bieler, P. Eisenlohr, F. Roters, D. Kumar, D.E. Mason, M.A. Crimp, D. Raabe, The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals, Int. J. Plast. 25 (2009) 1655–1683. doi:10.1016/j.ijplas.2008.09.002.
[34] F. Boßelmann, P. Romano, H. Fabritius, D. Raabe, M. Epple, The composition of the exoskeleton of two crustacea: The American lobster Homarus americanus and the edible crab Cancer pagurus, Thermochim. Acta. 463 (2007) 65–68. doi:10.1016/j.tca.2007.07.018.
[35] A. Brahme, M. Winning, D. Raabe, Prediction of cold rolling texture of steels using an Artificial Neural Network, Comput. Mater. Sci. 46 (2009) 800–804. doi:10.1016/j.commatsci.2009.04.014.
[36] D. Brands, D. Balzani, L. Scheunemann, J. Schröder, H. Richter, D. Raabe, Computational modeling of dual-phase steels based on representative three-dimensional microstructures obtained from EBSD data, Arch. Appl. Mech. 86 (2016) 575–598. doi:10.1007/s00419-015-1044-1.
[37] D. Brands, J. Schröder, D. Balzani, O. Dmitrieva, D. Raabe, On the Reconstruction and Computation of Dual-Phase Steel Microstructures Based on 3D EBSD Data, PAMM. 11 (2011) 503–504. doi:10.1002/pamm.201110243.
[38] A.J. Breen, I. Mouton, W. Lu, S. Wang, A. Szczepaniak, P. Kontis, L.T.T. Stephenson, Y. Chang, A.K. da Silva, C.H. Liebscher, D. Raabe, T.B. Britton, M. Herbig, B. Gault, Atomic scale analysis of grain boundary deuteride growth front in Zircaloy-4, Scr. Mater. 156 (2018) 42–46. doi:10.1016/j.scriptamat.2018.06.044.
[39] E. Breitbarth, S. Zaefferer, F. Archie, M. Besel, D. Raabe, G. Requena, Evolution of dislocation patterns inside the plastic zone introduced by fatigue in an aged aluminium alloy AA2024-T3, Mater. Sci. Eng. A. 718 (2018) 345–349. doi:10.1016/j.msea.2018.01.068.
[40] Y. Bu, Z. Li, J. Liu, H. Wang, D. Raabe, W. Yang, Nonbasal Slip Systems Enable a Strong and Ductile Hexagonal-Close-Packed High-Entropy Phase, Phys. Rev. Lett. 122 (2019) 75502. doi:10.1103/PhysRevLett.122.075502.
[41] M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging, Acta Mater. 59 (2011) 658–670. doi:10.1016/j.actamat.2010.10.002.
[42] M. Calcagnotto, D. Ponge, Y. Adachi, D. Raabe, Effect of Grain Refinement on Strength and Ductility in Dual-Phase Steels, Proc. 2nd Int. Symp. Steel Sci. (2009) 1–4.
[43] M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD, Mater. Sci. Eng. A. 527 (2010) 2738–2746. doi:10.1016/j.msea.2010.01.004.
[44] M. Calcagnotto, D. Ponge, D. Raabe, Effect of grain refinement to 1μm on strength and toughness of dual-phase steels, Mater. Sci. Eng. A. 527 (2010) 7832–7840. doi:10.1016/j.msea.2010.08.062.
[45] M. Calcagnotto, D. Ponge, D. Raabe, Ultrafine grained ferrite/martensite dual phase steel fabricated by large strain warm deformation and subsequent intercritical annealing, in: ISIJ Int., 2008: pp. 1096–1101. doi:10.2355/isijinternational.48.1096.
[46] M. Calcagnotto, D. Ponge, D. Raabe, Microstructure control during fabrication of ultrafine grained dual-phase steel: Characterization and effect of intercritical annealing parameters, ISIJ Int. 52 (2012) 874–883. doi:10.2355/isijinternational.52.874.
[47] M. Calcagnotto, D. Ponge, D. Raabe, On the effect of manganese on grain size stability and hardenability in ultrafine-grained ferrite/martensite dual-phase steels, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 43 (2012) 37–46. doi:10.1007/s11661-011-0828-3.
[48] Y. Cao, D. Ma, D. Raabe, The use of flat punch indentation to determine the viscoelastic properties in the time and frequency domains of a soft layer bonded to a rigid substrate, Acta Biomater. 5 (2009) 240–248. doi:10.1016/j.actbio.2008.07.020.
[49] Y. Cao, Z. Xue, X. Chen, D. Raabe, Correlation between the flow stress and the nominal indentation hardness of soft metals, Scr. Mater. 59 (2008) 518–521. doi:10.1016/j.scriptamat.2008.04.039.
[50] D. Cédat, O. Fandeur, C. Rey, D. Raabe, Polycrystal model of the mechanical behavior of a Mo-TiC 30 vol.% metal-ceramic composite using a three-dimensional microstructure map obtained by dual beam focused ion beam scanning electron microscopy, Acta Mater. 60 (2012) 1623–1632. doi:10.1016/j.actamat.2011.11.055.
[51] D. Cereceda, M. Diehl, F. Roters, D. Raabe, J.M. Perlado, J. Marian, Unraveling the temperature dependence of the yield strength in single-crystal tungsten using atomistically-informed crystal plasticity calculations, Int. J. Plast. 78 (2016) 242–265. doi:10.1016/j.ijplas.2015.09.002.
[52] D. Cereceda, M. Diehl, F. Roters, P. Shanthraj, D. Raabe, J.M. Perlado, J. Marian, Linking atomistic, kinetic Monte Carlo and crystal plasticity simulations of single-crystal tungsten strength, GAMM Mitteilungen. 38 (2015) 213–227. doi:10.1002/gamm.201510012.
[53] Y.H. Chang, I. Mouton, L. Stephenson, M. Ashton, G.K. Zhang, A. Szczpaniak, W.J. Lu, D. Ponge, D. Raabe, B. Gault, Quantification of solute deuterium in titanium deuteride by atom probe tomography with both laser pulsing and high-voltage pulsing: influence of the surface electric field, New J. Phys. 21 (2019) 053025. doi:10.1088/1367-2630/ab1c3b.
[54] Y. Chang, A.J. Breen, Z. Tarzimoghadam, P. Kürnsteiner, H. Gardner, A. Ackerman, A. Radecka, P.A.J. Bagot, W. Lu, T. Li, E.A. Jägle, M. Herbig, L.T. Stephenson, M.P. Moody, D. Rugg, D. Dye, D. Ponge, D. Raabe, B. Gault, Characterizing solute hydrogen and hydrides in pure and alloyed titanium at the atomic scale, Acta Mater. 150 (2018) 273–280. doi:10.1016/j.actamat.2018.02.064.
[55] Y. Chang, W. Lu, J. Guénolé, L.T. Stephenson, A. Szczpaniak, P. Kontis, A.K. Ackerman, F.F. Dear, I. Mouton, X. Zhong, S. Zhang, D. Dye, C.H. Liebscher, D. Ponge, S. Korte-Kerzel, D. Raabe, B. Gault, Ti and its alloys as examples of cryogenic focused ion beam milling of environmentally-sensitive materials, Nat. Commun. 10 (2019). doi:10.1038/s41467-019-08752-7.
[56] E. Chauvet, P. Kontis, E.A. Jägle, B. Gault, D. Raabe, C. Tassin, J.J. Blandin, R. Dendievel, B. Vayre, S. Abed, G. Martin, Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron Beam Melting, Acta Mater. 142 (2018) 82–94. doi:10.1016/j.actamat.2017.09.047.
[57] N. Chen, S. Zaefferer, L. Lahn, K. Günther, D. Raabe, Effects of topology on abnormal grain growth in silicon steel, Acta Mater. 51 (2003) 1755–1765. doi:10.1016/S1359-6454(02)00574-8.
[58] R. Chen, S. Sandlöbes, C. Zehnder, X. Zeng, S. Korte-Kerzel, D. Raabe, Deformation mechanisms, activated slip systems and critical resolved shear stresses in an Mg-LPSO alloy studied by micro-pillar compression, Mater. Des. 154 (2018) 203–216. doi:10.1016/j.matdes.2018.05.037.
[59] R. Chen, S. Sandlöbes, X. Zeng, D. Li, S. Korte-Kerzel, D. Raabe, Room temperature deformation of LPSO structures by non-basal slip, Mater. Sci. Eng. A. 682 (2017) 354–358. doi:10.1016/j.msea.2016.11.056.
[60] Y.Z. Chen, A. Herz, Y.J. Li, C. Borchers, P. Choi, D. Raabe, R. Kirchheim, Nanocrystalline Fe-C alloys produced by ball milling of iron and graphite, Acta Mater. 61 (2013) 3172–3185. doi:10.1016/j.actamat.2013.02.006.
[61] V. Chikkadi, S. Mandal, B. Nienhuis, D. Raabe, F. Varnik, P. Schall, Shear-induced anisotropic decay of correlations in hard-sphere colloidal glasses, EPL. 100 (2012) 1–6. doi:10.1209/0295-5075/100/56001.
[62] P. Choi, Y.J. Li, R. Kirchheim, D. Raabe, Deformation-induced cementite decomposition in pearlitic steel wires studied by atom probe tomography, in: ICCM Int. Conf. Compos. Mater., 2011.
[63] P.P. Choi, O. Cojocaru-Mirédin, R. Wuerz, D. Raabe, Comparative atom probe study of Cu(In,Ga)Se 2 thin-film solar cells deposited on soda-lime glass and mild steel substrates, J. Appl. Phys. 110 (2011) 1–7. doi:10.1063/1.3665723.
[64] P.P. Choi, I. Povstugar, J.P. Ahn, A. Kostka, D. Raabe, Thermal stability of TiAIN/CrN multilayer coatings studied by atom probe tomography, Ultramicroscopy. 111 (2011) 518–523. doi:10.1016/j.ultramic.2010.11.012.
[65] P.-P. Choi, O. Cojocaru-Mirédin, D. Abou-Ras, R. Caballero, D. Raabe, V.S. Smentkowski, C.G. Park, G.H. Gu, B. Mazumder, M.H. Wong, Y.-L. Hu, T.P. Melo, J.S. Speck, Atom Probe Tomography of Compound Semiconductors for Photovoltaic and Light-Emitting Device Applications, Micros. Today. 20 (2012) 18–24. doi:10.1017/s1551929512000235.
[66] W.S. Choi, B.C. De Cooman, S. Sandlöbes, D. Raabe, Size and orientation effects in partial dislocation-mediated deformation of twinning-induced plasticity steel micro-pillars, Acta Mater. 98 (2015) 391–404. doi:10.1016/j.actamat.2015.06.065.
[67] W.S. Choi, S. Sandlöbes, N. V. Malyar, C. Kirchlechner, S. Korte-Kerzel, G. Dehm, P.P. Choi, D. Raabe, On the nature of twin boundary-associated strengthening in Fe-Mn-C steel, Scr. Mater. 156 (2018) 27–31. doi:10.1016/j.scriptamat.2018.07.009.
[68] W.S. Choi, S. Sandlöbes, N. V. Malyar, C. Kirchlechner, S. Korte-Kerzel, G. Dehm, B.C. De Cooman, D. Raabe, Dislocation interaction and twinning-induced plasticity in face-centered cubic Fe-Mn-C micro-pillars, Acta Mater. 132 (2017) 162–173. doi:10.1016/j.actamat.2017.04.043.
[69] O. Cojocaru-Miŕdin, P. Choi, R. Wuerz, D. Raabe, Atomic-scale characterization of the CdS/CuInSe2 interface in thin-film solar cells, Appl. Phys. Lett. 98 (2011). doi:10.1063/1.3560308.
[70] O. Cojocaru-Miredin, P. Choi, R. Wuerz, D. Raabe, Atomic-scale distribution of impurities in cuinse2-based thin-film solar cells, Ultramicroscopy. 111 (2011) 552–556. doi:10.1016/j.ultramic.2010.12.034.
[71] O. Cojocaru-Mirédin, P. Choi, R. Wuerz, D. Raabe, Exploring the p-n junction region in Cu(In,Ga)Se 2 thin-film solar cells at the nanometer-scale, Appl. Phys. Lett. 101 (2012). doi:10.1063/1.4764527.
[72] O. Cojocaru-Mirédin, L. Abdellaoui, M. Nagli, S. Zhang, Y. Yu, C. Scheu, D. Raabe, M. Wuttig, Y. Amouyal, Role of Nanostructuring and Microstructuring in Silver Antimony Telluride Compounds for Thermoelectric Applications, ACS Appl. Mater. Interfaces. 9 (2017) 14779–14790. doi:10.1021/acsami.7b00689.
[73] O. Cojocaru-Mirédin, P.P. Choi, D. Abou-Ras, S.S. Schmidt, R. Caballero, D. Raabe, Characterization of grain boundaries in Cu(In,Ga)Se 2 films using atom-probe tomography, IEEE J. Photovoltaics. 1 (2011) 207–212. doi:10.1109/JPHOTOV.2011.2170447.
[74] O. Cojocaru-Mirédin, T. Schwarz, P.P. Choi, M. Herbig, R. Wuerz, D. Raabe, Atom probe tomography studies on the Cu(In,ga)Se2 grain boundaries., J. Vis. Exp. (2013) 1–8. doi:10.3791/50376.
[75] D. Colombara, F. Werner, T. Schwarz, I. Cañero Infante, Y. Fleming, N. Valle, C. Spindler, E. Vacchieri, G. Rey, M. Guennou, M. Bouttemy, A.G. Manjón, I. Peral Alonso, M. Melchiorre, B. El Adib, B. Gault, D. Raabe, P.J. Dale, S. Siebentritt, Sodium enhances indium-gallium interdiffusion in copper indium gallium diselenide photovoltaic absorbers, Nat. Commun. 9 (2018) 1–12. doi:10.1038/s41467-018-03115-0.
[76] W.A. Counts, M. Friák, C.C. Battaile, D. Raabe, J. Neugebauer, A comparison of polycrystalline elastic properties computed by analytic homogenization schemes and FEM, in: Phys. Status Solidi Basic Res., 2008: pp. 2630–2635. doi:10.1002/pssb.200844226.
[77] W.A. Counts, M. Friák, D. Raabe, J. Neugebauer, Ab Initio guided design of bcc ternary Mg-Li-X (X=Ca, Al, Si, Zn, Cu) alloys for ultra-lightweight applications, Adv. Eng. Mater. 12 (2010) 572–576. doi:10.1002/adem.200900308.
[78] W.A. Counts, M. Friák, D. Raabe, J. Neugebauer, Using Ab initio calculations in designing bcc MgLi-X alloys for ultra-lightweight applications, in: Adv. Eng. Mater., Pergamon, 2010: pp. 1198–1205. doi:10.1002/adem.201000225.
[79] R. Darvishi Kamachali, C. Schwarze, M. Lin, M. Diehl, P. Shanthraj, U. Prahl, I. Steinbach, D. Raabe, Numerical Benchmark of Phase-Field Simulations with Elastic Strains: Precipitation in the Presence of Chemo-Mechanical Coupling, Comput. Mater. Sci. 155 (2018) 541–553. doi:10.1016/j.commatsci.2018.09.011.
[80] V.B. de Oliveira, A.F. Padilha, A. Möslang, D. Raabe, H.R. Zschommler Sandim, Abnormal grain growth in ferritic-martensitic Eurofer-97 steel, in: Mater. Sci. Forum, 2013: pp. 333–336. doi:10.4028/www.scientific.net/MSF.753.333.
[81] R.P. De Siqueira, H.R.Z. Sandim, D. Raabe, Particle stimulated nucleation in coarse-grained ferritic stainless steel, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44 (2013) 469–478. doi:10.1007/s11661-012-1408-x.
[82] E. Demir, D. Raabe, Mechanical and microstructural single-crystal Bauschinger effects: Observation of reversible plasticity in copper during bending, Acta Mater. 58 (2010) 6055–6063. doi:10.1016/j.actamat.2010.07.023.
[83] E. Demir, D. Raabe, F. Roters, The mechanical size effect as a mean-field breakdown phenomenon: Example of microscale single crystal beam bending, Acta Mater. 58 (2010) 1876–1886. doi:10.1016/j.actamat.2009.11.031.
[84] E. Demir, D. Raabe, N. Zaafarani, S. Zaefferer, Investigation of the indentation size effect through the measurement of the geometrically necessary dislocations beneath small indents of different depths using EBSD tomography, Acta Mater. 57 (2009) 559–569. doi:10.1016/j.actamat.2008.09.039.
[85] E. Demir, F. Roters, D. Raabe, Bending of single crystal microcantilever beams of cube orientation: Finite element model and experiments, J. Mech. Phys. Solids. 58 (2010) 1599–1612. doi:10.1016/j.jmps.2010.07.007.
[86] Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, D. Raabe, Design of a twinning-induced plasticity high entropy alloy, Acta Mater. 94 (2015) 124–133. doi:10.1016/j.actamat.2015.04.014.
[87] P. Dey, R. Nazarov, B. Dutta, M. Yao, M. Herbig, M. Friák, T. Hickel, D. Raabe, J. Neugebauer, Ab initio explanation of disorder and off-stoichiometry in Fe-Mn-Al-C κ carbides, Phys. Rev. B. 95 (2017) 104108. doi:10.1103/PhysRevB.95.104108.
[88] M. Diehl, D. An, P. Shanthraj, S. Zaefferer, F. Roters, D. Raabe, Crystal plasticity study on stress and strain partitioning in a measured 3D dual phase steel microstructure, Phys. Mesomech. 20 (2017) 311–323. doi:10.1134/S1029959917030079.
[89] M. Diehl, M. Groeber, C. Haase, D.A. Molodov, F. Roters, D. Raabe, Identifying Structure–Property Relationships Through DREAM.3D Representative Volume Elements and DAMASK Crystal Plasticity Simulations: An Integrated Computational Materials Engineering Approach, JOM. 69 (2017) 848–855. doi:10.1007/s11837-017-2303-0.
[90] M. Diehl, M. Wicke, P. Shanthraj, F. Roters, A. Brueckner-Foit, D. Raabe, Coupled Crystal Plasticity–Phase Field Fracture Simulation Study on Damage Evolution Around a Void: Pore Shape Versus Crystallographic Orientation, JOM. 69 (2017) 872–878. doi:10.1007/s11837-017-2308-8.
[91] S. Djaziri, Y. Li, G.A. Nematollahi, B. Grabowski, S. Goto, C. Kirchlechner, A. Kostka, S. Doyle, J. Neugebauer, D. Raabe, G. Dehm, Deformation-Induced Martensite: A New Paradigm for Exceptional Steels, Adv. Mater. 28 (2016) 7753–7757. doi:10.1002/adma.201601526.
[92] O. Dmitrieva, P. Choi, S.S.A. Gerstl, D. Ponge, D. Raabe, Pulsed-laser atom probe studies of a precipitation hardened maraging TRIP steel, Ultramicroscopy. 111 (2011) 623–627. doi:10.1016/j.ultramic.2010.12.007.
[93] O. Dmitrieva, J. V. Svirina, E. Demir, D. Raabe, Investigation of the internal substructure of microbands in a deformed copper single crystal: Experiments and dislocation dynamics simulation, Model. Simul. Mater. Sci. Eng. 18 (2010). doi:10.1088/0965-0393/18/8/085011.
[94] O. Dmitrieva, D. Ponge, G. Inden, J. Millán, P. Choi, J. Sietsma, D. Raabe, Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation, Acta Mater. 59 (2011) 364–374. doi:10.1016/j.actamat.2010.09.042.
[95] O. Dmitrieva, P.W. Dondl, S. Müller, D. Raabe, Lamination microstructure in shear deformed copper single crystals, Acta Mater. 57 (2009) 3439–3449. doi:10.1016/j.actamat.2009.03.035.
[96] L. Donglan, L. Wenyuan, X. Chun, P. Meiman, W. Hong, Numerical simulation of dendritic growth in solidification of binary alloy with forced convection, Tezhong Zhuzao Ji Youse Hejin/Special Cast. Nonferrous Alloy. 29 (2009) 1609–1614. doi:10.3870/tzzz.2009.11.011.
[97] D. Dorner, S. Zaefferer, L. Lahn, D. Raabe, Overview of Microstructure and Microtexture Development in Grain-oriented Silicon Steel, J. Magn. Magn. Mater. 304 (2006) 183–186. doi:10.1016/j.jmmm.2006.02.116.
[98] D. Dorner, S. Zaefferer, D. Raabe, Retention of the Goss orientation between microbands during cold rolling of an Fe3%Si single crystal, Acta Mater. 55 (2007) 2519–2530. doi:10.1016/j.actamat.2006.11.048.
[99] M.J. Duarte, J. Klemm, S.O. Klemm, K.J.J. Mayrhofer, M. Stratmann, S. Borodin, A.H. Romero, M. Madinehei, D. Crespo, J. Serrano, S.S.A. Gerstl, P.P. Choi, D. Raabe, F.U. Renner, Element-resolved corrosion analysis of stainless-type glass-forming steels, Science (80-. ). 341 (2013) 372–376. doi:10.1126/science.1230081.
[100] M.J. Duarte, A. Kostka, J.A. Jimenez, P. Choi, J. Klemm, D. Crespo, D. Raabe, F.U. Renner, Crystallization, phase evolution and corrosion of Fe-based metallic glasses: An atomic-scale structural and chemical characterization study, Acta Mater. 71 (2014) 20–30. doi:10.1016/j.actamat.2014.02.027.
[101] A. Dutta, D. Ponge, S. Sandlöbes, D. Raabe, Strain partitioning and strain localization in medium manganese steels measured by in situ microscopic digital image correlation, Materialia. 5 (2019) 100252. doi:10.1016/j.mtla.2019.100252.
[102] C.C. Eiselt, M. Klimenkov, R. Lindau, A. Möslang, H.R.Z. Sandim, A.F. Padilha, D. Raabe, High-resolution transmission electron microscopy and electron backscatter diffraction in nanoscaled ferritic and ferritic-martensitic oxide dispersion strengthened-steels, J. Nucl. Mater. 385 (2009) 231–235. doi:10.1016/j.jnucmat.2008.11.029.
[103] A. Eisenlohr, I. Gutierrez-Urrutia, D. Raabe, Adiabatic temperature increase associated with deformation twinning and dislocation plasticity, Acta Mater. 60 (2012) 3994–4004. doi:10.1016/j.actamat.2012.03.008.
[104] P. Eisenlohr, D.D. Tjahjanto, T. Hochrainer, F. Roters, D. Raabe, Comparison of texture evolution in fcc metals predicted by various grain cluster homogenization schemes, Int. J. Mater. Res. 100 (2009) 500–509. doi:10.3139/146.110071.
[105] A. Elsner, R. Kaspar, D. Ponge, D. Raabe, S. Van Der Zwaag, Recrystallisation texture of cold rolled and annealed if steel produced from ferritic rolled hot strip, in: Mater. Sci. Forum, 2004: pp. 257–262. doi:10.4028/www.scientific.net/msf.467-470.257.
[106] P. Elstnerová, M. Friák, H.O. Fabritius, L. Lymperakis, T. Hickel, M. Petrov, S. Nikolov, D. Raabe, A. Ziegler, S. Hild, J. Neugebauer, Ab initio study of thermodynamic, structural, and elastic properties of Mg-substituted crystalline calcite, Acta Biomater. 6 (2010) 4506–4512. doi:10.1016/j.actbio.2010.07.015.
[107] J. Enax, H.O. Fabritius, A. Rack, O. Prymak, D. Raabe, M. Epple, Characterization of crocodile teeth: Correlation of composition, microstructure, and hardness, J. Struct. Biol. 184 (2013) 155–163. doi:10.1016/j.jsb.2013.09.018.
[108] J. Enax, A.M. Janus, D. Raabe, M. Epple, H.O. Fabritius, Ultrastructural organization and micromechanical properties of shark tooth enameloid, in: Acta Biomater., Acta Materialia Inc., 2014: pp. 3959–3968. doi:10.1016/j.actbio.2014.04.028.
[109] H.O. Fabritius, E.S. Karsten, K. Balasundaram, S. Hild, K. Huemer, D. Raabe, Correlation of structure, composition and local mechanical properties in the dorsal carapace of the edible crab cancer pagurus, in: Zeitschrift Fur Krist., 2012: pp. 766–776. doi:10.1524/zkri.2012.1532.
[110] H.O. Fabritius, C. Sachs, P.R. Triguero, D. Raabe, Influence of structural principles on the mechanics of a biological fiber-based composite material with hierarchical organization: The exoskeleton of the lobster homarus americanus, Adv. Mater. 21 (2009) 391–400. doi:10.1002/adma.200801219.
[111] H.O. Fabritius, A. Ziegler, M. Friák, S. Nikolov, J. Huber, B.H.M. Seidl, S. Ruangchai, F.I. Alagboso, S. Karsten, J. Lu, A.M. Janus, M. Petrov, L.F. Zhu, P. Hemzalová, S. Hild, D. Raabe, J. Neugebauer, Functional adaptation of crustacean exoskeletal elements through structural and compositional diversity: A combined experimental and theoretical study, Bioinspiration and Biomimetics. 11 (2016) 1–25. doi:10.1088/1748-3190/11/5/055006.
[112] K. Fabritius-Vilpoux, J. Enax, M. Herbig, D. Raabe, H.O. Fabritius, Quantitative affinity parameters of synthetic hydroxyapatite and enamel surfaces in vitro, Bioinspired, Biomim. Nanobiomaterials. 8 (2018) 141–153. doi:10.1680/jbibn.18.00035.
[113] H. Fan, Y. Zhu, J.A. El-Awady, D. Raabe, Precipitation hardening effects on extension twinning in magnesium alloys, Int. J. Plast. 106 (2018) 186–202. doi:10.1016/j.ijplas.2018.03.008.
[114] A.I. Fedosseev, D. Raabe, Application of the method of superposition of harmonic currents for the simulation of inhomogeneous deformation during hot rolling of FeCr, Scr. Metall. Mater. 30 (1994) 1–6. doi:10.1016/0956-716X(94)90348-4.
[115] I. Florea, R.M. Florea, O. Bǎlţǎtescu, V. Soare, R. Chelariu, I. Carcea, High entropy alloys, J. Optoelectron. Adv. Mater. 15 (2013) 761–767. doi:10.1038/s41578-019-0121-4.
[116] M. Friák, T. Hickel, B. Grabowski, L. Lymperakis, A. Udyansky, A. Dick, D. Ma, F. Roters, L.F. Zhu, A. Schlieter, U. Kühn, Z. Ebrahimi, R.A. Lebensohn, D. Holec, J. Eckert, H. Emmerich, D. Raabe, J. Neugebauer, Methodological challenges in combining quantum-mechanical and continuum approaches for materials science applications, Eur. Phys. J. Plus. 126 (2011) 1–22. doi:10.1140/epjp/i2011-11101-2.
[117] M. Friák, T. Hickel, F. Körmann, A. Udyansky, A. Dick, J. Von Pezold, D. Ma, O. Kim, W.A. Counts, M. Šob, T. Gebhardt, D. Music, J. Schneider, D. Raabe, J. Neugebauer, Determining the elasticity of materials employing quantum-mechanical approaches from the electronic ground state to the limits of materials stability, in: Steel Res. Int., 2011: pp. 86–100. doi:10.1002/srin.201000264.
[118] M. Friák, D. Tytko, D. Holec, P.P. Choi, P. Eisenlohr, D. Raabe, J. Neugebauer, Synergy of atom-probe structural data and quantum-mechanical calculations in a theory-guided design of extreme-stiffness superlattices containing metastable phases, New J. Phys. 17 (2015). doi:10.1088/1367-2630/17/9/093004.
[119] M. Friák, W.A. Counts, D. Ma, B. Sander, D. Holec, D. Raabe, J. Neugebauer, Theory-guided materials design of multi-phase Ti-Nb alloys with bone-matching elastic properties, Materials (Basel). 5 (2012) 1853–1872. doi:10.3390/ma5101853.
[120] M. Friák, W.A. Counts, D. Raabe, J. Neugebauer, Error propagation in multiscale approaches to the elasticity of polycrystals, in: Phys. Status Solidi Basic Res., 2008: pp. 2636–2641. doi:10.1002/pssb.200844240.
[121] M. Frommert, C. Zobrist, L. Lahn, A. Böttcher, D. Raabe, S. Zaefferer, Texture measurement of grain-oriented electrical steels after secondary recrystallization, J. Magn. Magn. Mater. 320 (2008) 657–660. doi:10.1016/j.jmmm.2008.04.102.
[122] N. Fujita, N. Ishikawa, F. Roters, C.C. Tasan, D. Raabe, Experimental-numerical study on strain and stress partitioning in bainitic steels with martensite-austenite constituents, Int. J. Plast. 104 (2018) 39–53. doi:10.1016/j.ijplas.2018.01.012.
[123] B. Gault, A.J. Breen, Y. Chang, J. He, E.A. Jägle, P. Kontis, P. Kürnsteiner, A. Kwiatkowski Da Silva, S.K. Makineni, I. Mouton, Z. Peng, D. Ponge, T. Schwarz, L.T. Stephenson, A. Szczepaniak, H. Zhao, D. Raabe, Interfaces and defect composition at the near-atomic scale through atom probe tomography investigations, J. Mater. Res. 33 (2018) 4018–4030. doi:10.1557/jmr.2018.375.
[124] E.P. George, D. Raabe, R.O. Ritchie, High entropy alloys, Nat. Rev. Mater. 4 (2019) 515–534. doi:10.1038/ s41578-019-0121-4.
[125] A. Godara, D. Raabe, Influence of fiber orientation on global mechanical behavior and mesoscale strain localization in a short glass-fiber-reinforced epoxy polymer composite during tensile deformation investigated using digital image correlation, Compos. Sci. Technol. 67 (2007) 2417–2427. doi:10.1016/j.compscitech.2007.01.005.
[126] A. Godara, D. Raabe, I. Bergmann, R. Putz, U. Müller, Influence of additives on the global mechanical behavior and the microscopic strain localization in wood reinforced polypropylene composites during tensile deformation investigated using digital image correlation, Compos. Sci. Technol. 69 (2009) 139–146. doi:10.1016/j.compscitech.2008.08.031.
[127] A. Godara, D. Raabe, S. Green, The influence of sterilization processes on the micromechanical properties of carbon fiber-reinforced PEEK composites for bone implant applications, Acta Biomater. 3 (2007) 209–220. doi:10.1016/j.actbio.2006.11.005.
[128] A. Godara, D. Raabe, P. Van Puyvelde, P. Moldenaers, Influence of flow on the global crystallization kinetics of iso-tactic polypropylene, Polym. Test. 25 (2006) 460–469. doi:10.1016/j.polymertesting.2006.01.010.
[129] A.J. Goetz, D.R. Steinmetz, E. Griesshaber, S. Zaefferer, D. Raabe, K. Kelm, S. Irsen, A. Sehrbrock, W.W. Schmahl, Interdigitating biocalcite dendrites form a 3-D jigsaw structure in brachiopod shells, Acta Biomater. 7 (2011) 2237–2243. doi:10.1016/j.actbio.2011.01.035.
[130] G. Gottstein, D. Raabe, Integral modeling of metallic materials, Curr. Opin. Solid State Mater. Sci. 3 (1998) 264–268. doi:10.1016/S1359-0286(98)80101-0.
[131] N. Grilli, K.G.F. Janssens, J. Nellessen, S. Sandlöbes, D. Raabe, Multiple slip dislocation patterning in a dislocation-based crystal plasticity finite element method, Int. J. Plast. 100 (2018) 104–121. doi:10.1016/j.ijplas.2017.09.015.
[132] M. Gross, I. Steinbach, D. Raabe, F. Varnik, Viscous coalescence of droplets: A lattice Boltzmann study, Phys. Fluids. 25 (2013) 1–14. doi:10.1063/1.4803178.
[133] M. Gross, F. Varnik, D. Raabe, Fall and rise of small droplets on rough hydrophobic substrates, Europhys. Lett. 88 (2009) 1–6. doi:10.1209/0295-5075/88/26002.
[134] M. Gross, F. Varnik, D. Raabe, I. Steinbach, Small droplets on superhydrophobic substrates, Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 81 (2010) 1–14. doi:10.1103/PhysRevE.81.051606.
[135] O. Guillon, C. Elsässer, O. Gutfleisch, J. Janek, S. Korte-Kerzel, D. Raabe, C.A. Volkert, Manipulation of matter by electric and magnetic fields: Toward novel synthesis and processing routes of inorganic materials, Mater. Today. 21 (2018) 527–536. doi:10.1016/j.mattod.2018.03.026.
[136] W. Guo, E.A. Jägle, P.P. Choi, J. Yao, A. Kostka, J.M. Schneider, D. Raabe, Shear-induced mixing governs codeformation of crystalline-amorphous nanolaminates, Phys. Rev. Lett. 113 (2014) 1–5. doi:10.1103/PhysRevLett.113.035501.
[137] W. Guo, E.A. Jägle, P.P. Choi, J. Yao, A. Kostka, J.M. Schneider, D. Raabe, Erratum: Shear-induced mixing governs codeformation of crystalline- amorphous nanolaminates (Physical Review Letters (2014) 113 (035501)), Phys. Rev. Lett. 113 (2014) 69903. doi:10.1103/PhysRevLett.113.069903.
[138] W. Guo, E. Jägle, J. Yao, V. Maier, S. Korte-Kerzel, J.M. Schneider, D. Raabe, Intrinsic and extrinsic size effects in the deformation of amorphous CuZr/nanocrystalline Cu nanolaminates, Acta Mater. 80 (2014) 94–106. doi:10.1016/j.actamat.2014.07.027.
[139] W. Guo, Z. Pei, X. Sang, J.D. Poplawsky, S. Bruschi, J. Qu, D. Raabe, H. Bei, Shape-preserving machining produces gradient nanolaminate medium entropy alloys with high strain hardening capability, Acta Mater. 170 (2019) 176–186. doi:10.1016/j.actamat.2019.03.024.
[140] W. Guo, J. Yao, E.A. Jägle, P.P. Choi, M. Herbig, J.M. Schneider, D. Raabe, Deformation induced alloying in crystalline - metallic glass nano-composites, Mater. Sci. Eng. A. 628 (2015) 269–280. doi:10.1016/j.msea.2015.01.062.
[141] I. Gutierrez-Urrutia, A. Böttcher, L. Lahn, D. Raabe, Microstructure-magnetic property relations in grain-oriented electrical steels: Quantitative analysis of the sharpness of the Goss orientation, J. Mater. Sci. 49 (2014) 269–276. doi:10.1007/s10853-013-7701-2.
[142] I. Gutierrez-Urrutia, J.A. Del Valle, S. Zaefferer, D. Raabe, Study of internal stresses in a TWIP steel analyzing transient and permanent softening during reverse shear tests, J. Mater. Sci. 45 (2010) 6604–6610. doi:10.1007/s10853-010-4750-7.
[143] I. Gutierrez-Urrutia, D. Raabe, Microbanding mechanism in an Fe-Mn-C high-Mn twinning-induced plasticity steel, Scr. Mater. 69 (2013) 53–56. doi:10.1016/j.scriptamat.2013.03.010.
[144] I. Gutierrez-Urrutia, D. Raabe, Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe-Mn-Al-C steel, Acta Mater. 60 (2012) 5791–5802. doi:10.1016/j.actamat.2012.07.018.
[145] I. Gutierrez-Urrutia, D. Raabe, High strength and ductile low density austenitic FeMnAlC steels: Simplex and alloys strengthened by nanoscale ordered carbides, Mater. Sci. Technol. (United Kingdom). 30 (2014) 1099–1104. doi:10.1179/1743284714Y.0000000515.
[146] I. Gutierrez-Urrutia, D. Raabe, Dislocation and twin substructure evolution during strain hardening of an Fe-22 wt.% Mn-0.6 wt.% C TWIP steel observed by electron channeling contrast imaging, Acta Mater. 59 (2011) 6449–6462. doi:10.1016/j.actamat.2011.07.009.
[147] I. Gutierrez-Urrutia, D. Raabe, Dislocation density measurement by electron channeling contrast imaging in a scanning electron microscope, Scr. Mater. 66 (2012) 343–346. doi:10.1016/j.scriptamat.2011.11.027.
[148] I. Gutierrez-Urrutia, D. Raabe, Grain size effect on strain hardening in twinning-induced plasticity steels, Scr. Mater. 66 (2012) 992–996. doi:10.1016/j.scriptamat.2012.01.037.
[149] I. Gutierrez-Urrutia, D. Raabe, Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels, Scr. Mater. 68 (2013) 343–347. doi:10.1016/j.scriptamat.2012.08.038.
[150] I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe, Coupling of electron channeling with EBSD: Toward the quantitative characterization of deformation structures in the sem, JOM. 65 (2013) 1229–1236. doi:10.1007/s11837-013-0678-0.
[151] I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe, The effect of grain size and grain orientation on deformation twinning in a Fe-22wt.% Mn-0.6wt.% C TWIP steel, Mater. Sci. Eng. A. 527 (2010) 3552–3560. doi:10.1016/j.msea.2010.02.041.
[152] I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe, Electron channeling contrast imaging of twins and dislocations in twinning-induced plasticity steels under controlled diffraction conditions in a scanning electron microscope, Scr. Mater. 61 (2009) 737–740. doi:10.1016/j.scriptamat.2009.06.018.
[153] I. Gutierrez-Urrutia, F. Archie, D. Raabe, F.K. Yan, N.R. Tao, K. Lu, Plastic accommodation at homophase interfaces between nanotwinned and recrystallized grains in an austenitic duplex-microstructured steel, Sci. Technol. Adv. Mater. 17 (2016) 29–36. doi:10.1080/14686996.2016.1140302.
[154] I. Gutierrez-Urrutia, R. Marceau, M. Herbig, D. Raabe, Revealing the strain-hardening mechanisms of advanced high-Mn steels by multi-scale microstructure characterization, in: Mater. Sci. Forum, 2014: pp. 755–760. doi:10.4028/www.scientific.net/msf.783-786.755.
[155] I. Gutierrez-Urrutia, D. Raabe, Study of deformation twinning and planar slip in a TWIP steel by electron channeling contrast imaging in a SEM, in: Mater. Sci. Forum, 2012: pp. 523–529. doi:10.4028/www.scientific.net/MSF.702-703.523.
[156] I. Gutierrez-Urrutia, D. Raabe, Study of dislocation substructures in high-Mn steels by electron channeling contrast imaging, in: Mater. Sci. Forum, 2014: pp. 750–754. doi:10.4028/www.scientific.net/msf.783-786.750.
[157] S.M. Hafez Haghighat, G. Eggeler, D. Raabe, Effect of climb on dislocation mechanisms and creep rates in γ′-strengthened Ni base superalloy single crystals: A discrete dislocation dynamics study, Acta Mater. 61 (2013) 3709–3723. doi:10.1016/j.actamat.2013.03.003.
[158] S.M. Hafez Haghighat, R. Schäublin, D. Raabe, Atomistic simulation of the a0 〈1 0 0〉 binary junction formation and its unzipping in body-centered cubic iron, Acta Mater. 64 (2014) 24–32. doi:10.1016/j.actamat.2013.11.037.
[159] S.M. Hafez Haghighat, J. Von Pezold, C.P. Race, F. Körmann, M. Friák, J. Neugebauer, D. Raabe, Influence of the dislocation core on the glide of the 〈1 1 〉{1 1 0} edge dislocation in bcc-iron: An embedded atom method study, Comput. Mater. Sci. 87 (2014) 274–282. doi:10.1016/j.commatsci.2014.02.031.
[160] D. Haley, P. Choi, D. Raabe, Guided mass spectrum labelling in atom probe tomography, Ultramicroscopy. 159 (2015) 338–345. doi:10.1016/j.ultramic.2015.03.005.
[161] D. Haley, S. V. Merzlikin, P. Choi, D. Raabe, Atom probe tomography observation of hydrogen in high-Mn steel and silver charged via an electrolytic route, Int. J. Hydrogen Energy. 39 (2014) 12221–12229. doi:10.1016/j.ijhydene.2014.05.169.
[162] C.S. Han, A. Ma, F. Roters, D. Raabe, A Finite Element approach with patch projection for strain gradient plasticity formulations, Int. J. Plast. 23 (2007) 690–710. doi:10.1016/j.ijplas.2006.08.003.
[163] F. Han, F. Roters, D. Raabe, Microstructure-based multiscale modeling of large strain plastic deformation by coupling a full-field crystal plasticity-spectral solver with an implicit finite element solver, Int. J. Plast. (2019). doi:10.1016/j.ijplas.2019.09.004.
[164] J. Han, A.K. da Silva, D. Ponge, D. Raabe, S.M. Lee, Y.K. Lee, S.I. Lee, B. Hwang, The effects of prior austenite grain boundaries and microstructural morphology on the impact toughness of intercritically annealed medium Mn steel, Acta Mater. 122 (2017) 199–206. doi:10.1016/j.actamat.2016.09.048.
[165] J. Han, S.H. Kang, S.J. Lee, M. Kawasaki, H.J. Lee, D. Ponge, D. Raabe, Y.K. Lee, Superplasticity in a lean Fe-Mn-Al steel, Nat. Commun. 8 (2017) 8–13. doi:10.1038/s41467-017-00814-y.
[166] U. Hangen, D. Raabe, Modelling of the yield strength of a heavily wire drawn Cu-20%Nb composite by use of a modified linear rule of mixtures, Acta Metall. Mater. 43 (1995) 4075–4082. doi:10.1016/0956-7151(95)00079-B.
[167] U. Hangen, D. Raabe, Experimental Investigation and Simulation of the Normal Conducting Properties of a Heavily Cold Rolled Cu‐20 mass%Nb in Situ Composite, Phys. Status Solidi. 147 (1995) 515–527. doi:10.1002/pssa.2211470222.
[168] M. Hassani, P. Engels, D. Raabe, F. Varnik, Localized plastic deformation in a model metallic glass: A survey of free volume and local force distributions, J. Stat. Mech. Theory Exp. 2016 (2016) 84006. doi:10.1088/1742-5468/2016/08/084006.
[169] J. Haubrich, J. Gussone, P. Barriobero-Vila, P. Kürnsteiner, E.A. Jägle, D. Raabe, N. Schell, G. Requena, The role of lattice defects, element partitioning and intrinsic heat effects on the microstructure in selective laser melted Ti-6Al-4V, Acta Mater. 167 (2019) 136–148. doi:10.1016/j.actamat.2019.01.039.
[170] D. He, J.C. Zhu, S. Zaefferer, D. Raabe, Y. Liu, Z.L. Lai, X.W. Yang, Influences of deformation strain, strain rate and cooling rate on the Burgers orientation relationship and variants morphology during β→α phase transformation in a near α titanium alloy, Mater. Sci. Eng. A. 549 (2012) 20–29. doi:10.1016/j.msea.2012.03.110.
[171] D. He, J. Zhu, S. Zaefferer, D. Raabe, Effect of retained beta layer on slip transmission in Ti-6Al-2Zr-1Mo-1V near alpha titanium alloy during tensile deformation at room temperature, Mater. Des. 56 (2014) 937–942. doi:10.1016/j.matdes.2013.12.018.
[172] D. Helm, A. Butz, D. Raabe, P. Gumbsch, Microstructure-based description of the deformation of metals: Theory and application, in: Proc. 1st World Congr. Integr. Comput. Mater. Eng. ICME, 2011: pp. 89–98. doi:10.1007/s11837-011-0056-8.
[173] M. Herbig, P. Choi, D. Raabe, Combining structural and chemical information at the nanometer scale by correlative transmission electron microscopy and atom probe tomography, Ultramicroscopy. 153 (2015) 32–39. doi:10.1016/j.ultramic.2015.02.003.
[174] M. Herbig, P.-P. Choi, D. Raabe, Combining Structural and Chemical Information on the Nanometer Scale by Correlative TEM and APT, Microsc. Microanal. 19 (2013) 948–949. doi:10.1017/s1431927613006739.
[175] M. Herbig, M. Kuzmina, C. Haase, R.K.W. Marceau, I. Gutierrez-Urrutia, D. Haley, D.A. Molodov, P. Choi, D. Raabe, Grain boundary segregation in Fe-Mn-C twinning-induced plasticity steels studied by correlative electron backscatter diffraction and atom probe tomography, Acta Mater. 83 (2015) 37–47. doi:10.1016/j.actamat.2014.09.041.
[176] M. Herbig, D. Raabe, Y.J. Li, P. Choi, S. Zaefferer, S. Goto, Atomic-scale quantification of grain boundary segregation in nanocrystalline material, Phys. Rev. Lett. 112 (2013). doi:10.1103/PhysRevLett.112.126103.
[177] F. Heringhaus, D. Raabe, G. Gottstein, On the correlation of microstructure and electromagnetic properties of heavily cold worked Cu-20 wt% Nb wires, Acta Metall. Mater. 43 (1995) 1467–1476. doi:10.1016/0956-7151(94)00378-U.
[178] F. Heringhaus, D. Raabe, U. Hangen, G. Gottstein, Textures of rolled and wire drawn Cu-20%Nb, Mater. Sci. Forum. 157–6 (1994) 709–714. doi:10.4028/www.scientific.net/msf.157-162.709.
[179] C. Herrera, D. Ponge, D. Raabe, Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability, Acta Mater. 59 (2011) 4653–4664. doi:10.1016/j.actamat.2011.04.011.
[180] C. Herrera, D. Ponge, D. Raabe, Characterization of the Microstructure, Crystallographic Texture and Segregation of an As-cast Duplex Stainless Steel Slab, Steel Res. Int. 79 (2008) 482–488. doi:10.1002/srin.200806156.
[181] C. Herrera, D. Ponge, D. Raabe, Recrystallization during Annealing of a Cold Rolled Lean Duplex Stainless Steel, Mater. Sci. Forum. 715–716 (2012) 550–550. doi:10.4028/www.scientific.net/msf.715-716.550.
[182] T. Hickel, S. Sandlöbes, R.K.W. Marceau, A. Dick, I. Bleskov, J. Neugebauer, D. Raabe, Impact of nanodiffusion on the stacking fault energy in high-strength steels, Acta Mater. 75 (2014) 147–155. doi:10.1016/j.actamat.2014.04.062.
[183] A. Hohenwarter, B. Völker, M.W. Kapp, Y. Li, S. Goto, D. Raabe, R. Pippan, Ultra-strong and damage tolerant metallic bulk materials: A lesson from nanostructured pearlitic steel wires, Sci. Rep. 6 (2016) 1–10. doi:10.1038/srep33228.
[184] M. Hölscher, D. Raabe, K. Lücke, Relationship between rolling textures and shear textures in f.c.c. and b.c.c. metals, Acta Metall. Mater. 42 (1994) 879–886. doi:10.1016/0956-7151(94)90283-6.
[185] M. Holscher, D. Raabe, K. Lucke, Relation and Texture.Pdf, Acta Metall. 42 (1994) 879–886.
[186] M. Holscher, D. Raabe, K. Lucke, Overview textures steels, Steel Res. 62 (1991) 567–575. doi:10.1155/TSM.14-18.585.
[187] K. Hono, D. Raabe, S.P. Ringer, D.N. Seidman, Atom probe tomography of metallic nanostructures, MRS Bull. 41 (2016) 23–29. doi:10.1557/mrs.2015.314.
[188] L.F. Huang, B. Grabowski, J. Zhang, M.J. Lai, C.C. Tasan, S. Sandlöbes, D. Raabe, J. Neugebauer, From electronic structure to phase diagrams: A bottom-up approach to understand the stability of titanium–transition metal alloys, Acta Mater. 113 (2016) 311–319. doi:10.1016/j.actamat.2016.04.059.
[189] M.Y. Huh, J.H. Lee, S.H. Park, O. Engler, D. Raabe, Effect of through-thickness macro and micro-texture gradients on ridging of 17%Cr ferritic stainless steel sheet, Steel Res. Int. 76 (2005) 797–806. doi:10.1002/srin.200506098.
[190] H.J. Im, S.K. Makineni, B. Gault, F. Stein, D. Raabe, P.P. Choi, Elemental partitioning and site-occupancy in γ/γ′ forming Co-Ti-Mo and Co-Ti-Cr alloys, Scr. Mater. 154 (2018) 159–162. doi:10.1016/j.scriptamat.2018.05.041.
[191] M.I. Isik, A. Kostka, V.A. Yardley, K.G. Pradeep, M.J. Duarte, P.P. Choi, D. Raabe, G. Eggeler, The nucleation of Mo-rich Laves phase particles adjacent to M23C6 micrograin boundary carbides in 12% Cr tempered martensite ferritic steels, Acta Mater. 90 (2015) 94–104. doi:10.1016/j.actamat.2015.01.027.
[192] M.I. Isik, A. Kostka, V.A. Yardley, K.G. Pradeep, M.J. Duarte, P.P. Choi, D. Raabe, G. Eggeler, K. Sawada, K. Kubo, F. Abe, D. Rojas, J. Garcia, O. Prat, L. Agudo, C. Carrasco, G. Sauthoff, A.R. Kaysser-Pyzalla, S.S. Wang, L. Chang, L. Wang, T. Wang, Y.D. Wu, J.J. Si, J. Zhu, M.X. Zhang, X.D. Hui, V. Knezevic, G. Sauthoff, J. Vilk, G. Inden, A. Schneider, R. Agamennone, W. Blum, Y. Wang, A. Scholz, C. Berger, J. Ehlers, L. Singheiser, M.F. McGuire, J.A. Slotwinski, E.J. Garboczi, K.M. Hebenstreit, K.G. Tak, U. Schulz, G. Eggeler, M. Qian, P. Cao, M.A. Easton, S.D. McDonald, D.H. StJohn, A. Prasad, M.A. Easton, M. Qian, N. Dudova, R. Mishnev, R. Kaibyshev, T. Fujita, P. Emeritus, Å. Gustafson, M. Hättestrand, 新井将彦, 朝倉健太郎, 土井裕之, 川中啓嗣, 小関敏彦, 堀内寿晃, L. Helis, Y. Toda, T. Hara, H. Miyazaki, F. Abe, A. Bandyopadhyay, K.D. Traxel, A. Waveform, W. Generator, C. Körner, R. Barltrop, P.C. Van Wiggen, H.C.F. Rozendaal, E.J. Mittemeijer, P.R. Levey, A. van Bennekom, M. Sumita, T. Hanawa, S.H. Teoh, F. Abe, C. Guo, W. Ge, F. Lin, A.A. Antonysamy, J. Meyer, P.B. Prangnell, N. Raghavan, S.S.S.S. Babu, R.R. Dehoff, S. Pannala, S. Simunovic, M. Kirka, J. Turner, N. Carlson, ASTM International, J.W. Elmer, J. Vaja, H.D. Carlton, R. Pong, J.W. Simmons, H. Gong, K. Rafi, H. Gu, T. Starr, B. Stucker, M. Navarro, E. Felip, L. Garcia, J. Bellmunt, L. Jolis, S. Morales, D. Rubio, W.E. Frazier, J.. P. Kruth, T. Mukherjee, J.S. Zuback, A. De, T. DebRoy, R. Hague, I. Campbell, P. Dickens, M.N. Jahangir, M.A.H. Mamun, M.P. Sealy, L. Nath, M. Lovaglia, T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W.Z. Zhang, J.S.J.W. Lee, H.G. Armaki, K. Maruyama, T. Muraki, H. Asahi, N. Dudova, R. Mishnev, R. Kaibyshev, S. Ban-Ya, F. Ishii, Y. Iguchi, T. Nagasaka, L. Cipolla, H.K. Danielsen, D. Venditti, P.E. Di Nunzio, J. Hald, M.A.J. Somers, J. Rawers, G. Asai, R. Doan, J. Dunning, J.W. Simmons, I. Fedorova, A. Belyakov, P. Kozlov, V. Skorobogatykh, I. Shenkova, R. Kaibyshev, G.M. Castro Güiza, C.A.S. Oliveira, F.Y. Chen, Z. Cui, J. Chen, G.M. Castro Güiza, C.A.S. Oliveira, M. Galati, L. Iuliano, W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S.S.S. Babu, A. Bandyopadhyay, K.D. Traxel, P. Wang, X. Tan, C. He, M.L.S. Nai, R. Huang, S.B. Tor, J. Wei, H.H. Li, E. Hsu, J. Szpunar, H. Utsunomiya, T. Sakai, O. Tm-, T. Unga, G. Miyamoto, N. Takayama, T. Furuhara, S. Ahn, N. Kang, T.K. Welding, J. Society, P. Krakhmalev, I. Yadroitsava, G. Fredriksson, I. Yadroitsev, J. Karlsson, A. Chatterjee, D. Chakrabarti, A. Moitra, R. Mitra, A.K. Bhaduri, G. Palumbo, K.T. Aust, W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S.S.S. Babu, A. Hemmasian Ettefagh, S. Guo, S. Semboshi, M. Sato, Y. Kaneno, A. Iwase, T. Takasugi, Y. Zhong, L.-E.E. Rännar, L. Liu, A. Koptyug, S. Wikman, J. Olsen, D. Cui, Z. Shen, D. Thesis, S. Pasebani, M. Ghayoor, S. Badwe, H. Irrinki, S. V. Atre, Y.S. Mpa, T. Wang, Y.Y. Zhu, S.Q. Zhang, H.B. Tang, H.M. Wang, F. Yan, W. Xiong, E.J. Faierson, F. Sciammarella, E.J. Faierson, G.B. Olson, X. Xiao, G. Liu, B. Hu, J.Q. Wang, W.W. Ma, Y. Zhong, H.K.D.H.K.D.H.D.H. Bhadeshia, H. Shiratori, T. Fujieda, K. Yamanaka, Y. Koizumi, K. Kuwabara, T. Kato, A. Chiba, F. Abe, S. Nakazawa, H. Araki, T. Noda, A. Fedoseeva, E. Tkachev, V. Dudko, N. Dudova, R. Kaibyshev, Y. Xu, Y. Nie, M.M.M. Wang, W. Li, X. Jin, H.K. Danielsen, J. Hald, T. Ishimoto, K. Hagihara, K. Hisamoto, S.H. Sun, T. Nakano, A.-W. El-Morsy, A.I.Z. Farahat, O. Tm-, C.G. Panait, A. Zielińska-Lipiec, T. Koziel, A. Czyrska-Filemonowicz, A.F. Gourgues-Lorenzon, W. Bendick, Q. Gao, X. Dong, C.C. Li, Z. Lin, X. Yang, M. Dai, T. Unga, C. Wang, M.M.M. Wang, J. Shi, W. Hui, H. Dong, C.C. Zhang, Q. Wang, J. Ren, R. Li, M.M.M. Wang, F. Zhang, K. Sun, F. Siska, L. Stratil, M. Smid, N. Luptakova, T. Zalezak, D. Bartkova, M. Carton, F. Schubert, L.E. Murr, C. Tan, K. Zhou, W.W. Ma, P. Zhang, M. Liu, T. Kuang, M.J. Holzweissig, A. Taube, F. Brenne, M. Schaper, T. Niendorf, V. Randle, I. Fedorova, A. Belyakov, P. Kozlov, V. Skorobogatykh, I. Shenkova, R. Kaibyshev, F. Abe, L. Saraf, C. Körner, S. Figure, L. Code, G. Ribárik, A. F., K. T.-U., V. R., D. Processing, T. Composition, S. Takebayashi, T. Kunieda, N. Yoshinaga, K. Ushioda, S. Ogata, R.D.K. Misra, S. Nayak, S.A. Mali, J.S. Shah, M.C. Somani, L.P. Karjalainen, L. Code, J.H. Shin, J. Jeong, J.S.J.W. Lee, G. Ribárik, K.R. Jo, E.J. Seo, D. Hand Sulistiyo, J.K. Kim, S.W.S.H. Kim, B.C. De Cooman, K. Fujiyama, K. Mori, D. Kaneko, H. Kimachi, T. Saito, R. Ishii, T. Hino, Z. Cong, Y. Murata, T. Ungár, I. Dragomir, Á. Révész, A. Borbély, J. Peŝiĉka, A. Dronhofer, G. Eggeler, F. Abe, T.J. Ruggles, T.M. Rampton, A. Khosravani, D.T. Fullwood, I. Dragomir-Cernatescu, S.D. Yadav, S. Kalácska, M. Dománková, D.C. Yubero, R. Resel, I. Groma, C. Beal, B. Sonderegger, C. Sommitsch, C. Poletti, P. Yan, Z. Liu, H. Bao, Y. Weng, W. Liu, H. Hoseiny, F.G. Caballero, B. Högman, D. San Martin, C. Capdevila, L.G. Nordh, H.O. Andrén, T.L. Johnston, C.E. Feltner, C.-A.A. Gandin, S. Mosbah, T. Volkmann, D.M. Herlach, J. Hemanth, N. Raghavan, S. Simunovic, R.R. Dehoff, A. Plotkowski, J. Turner, M. Kirka, S.S.S.S. Babu, R.N. Caron, G. Krauss, J.E. Test, C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, A. Grybėnas, V. Makarevičius, A. Baltušnikas, I. Lukošiūtė, R. Kriūkienė, M. Song, C. Sun, Z. Fan, Y. Chen, R. Zhu, K.Y. Yu, K.T. Hartwig, H.M. Wang, X.Z.X. Zhang, B. Jiang, M. Wu, M.X. Zhang, F. Zhao, Z. Zhao, Y.Y.R.Y. Liu, G. Krauss, X. Deng, D. Ju, S.C. Kennett, G. Krauss, K.O. Findley, R. Hanna, A. Zoughaib, A. Prasad, S. Mosbah, H. Henein, C.-A.A. Gandin, U. Fritshing, V. Uhlenwinkel, G.M. Janowski, F.S. Biancaniello, S.D. Ridder, L.V.M. Antony, R.G. Reddy, J. Hofstede, J. Valer, J. De Kok, A. Guemes, F. Desrumaux, L. Code, S. Weeks, S. Training, L. Code, J. Dong, K.Y. A. Miyazaki, M. Gunzi, Z. fei Hu, D. hai He, F. Mo, M. Mørup, N. Mikkel, H. Saitoh, K. Ushioda, N. Yoshinaga, W. Yamada, M. Kubota, K. Ushioda, G. Miyamoto, T. Furuhara, A. Stormvinter, G. Miyamoto, T. Furuhara, P. Hedström, A. Borgenstam, ITPP, N. Takayama, G. Miyamoto, T. Furuhara, A. Puype, L. Malerba, N. De Wispelaere, R. Petrov, J. Sietsma, K. Sawada, K. Kimura, F. Abe, P. Yan, Z. Liu, H. Bao, Y. Weng, W. Liu, M.K. Lee, G.H. Kim, K.H. Kim, W.W. Kim, Y.Y.R.Y. Liu, D. Ye, Q.L. Yong, J. Su, K.Y. Zhao, W. Jiang, C. Loier, C. Leymonie, T. Ungár, A. Borbély, T. Film, K. Laha, K.S. Chandravathi, P. Parameswaran, K. Bhanu Sankara Rao, B. Sundman, B. Jansson, J.O. Andersson, W.G. Johnston, T. Lauritzen, J.H. Rosolowski, A.M. Turkalo, T. Moroishi, H. Fujikawa, H. Makiura, L.C. Lim, M.O. Lai, J. Ma, D.O. Northwood, B. Miao, D.O. Northwood, L.C. Lim, M.O. Lai, Y. Shen, H.H. Liu, Z. Shang, Z. Xu, U.E. Klotz, C. Solenthaler, P.J. Uggowitzer, H.G. Armaki, R. Chen, K. Maruyama, M. Igarashi, A. Orlova, J. Bursik, K. Kucharova, V. Sklenicka, M.F. McGuire, Outokumpu, S.S. Wang, L. Chang, L. Wang, T. Wang, Y.D. Wu, J.J. Si, J. Zhu, M.X. Zhang, X.D. Hui, P. Chaudhuri, A. Ghosh, M.S. Gusmão, C. Mota, H.O. Frota, K.S. Chan, M.A. Miller, W. Liang, C. Ellis-Terrell, H. Chen, D. Gu, D. Dai, M. Xia, C. Ma, W.J. Weydanz, B.M. Way, T. Van Buuren, J.R. Dahn, A. Schneider, G. Inden, L. Morsdorf, O. Jeannin, D. Barbier, M. Mitsuhara, D. Raabe, C.C. Tasan, R. Doan, S. Bureau, S. Bureau, S.N. Prasad, P. Rambabu, N.E. Prasad, P. Press, M. Klinger, F. Masuyama, R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul, Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett, J.C. Vaillant, B. Vandenberghe, B. Hahn, H. Heuser, C. Jochum, R.L. Klueh, D.R. Harries, X. Zhou, C. Liu, L. Yu, Y.Y.R.Y. Liu, H.H. Li, J.. P. Kruth, J. He, A. Bandyopadhyay, K.D. Traxel, D. Processing, E.D. Sheets, R.L. Klueh, F. Masuyama, L.M. Anovitz, D.R. Cole, X.F. Gu, T. Furuhara, W.Z. Zhang, S. Morito, H. Yoshida, T. Maki, X. Huang, K. Kimura, N. Ohi, K. Shimazu, T. Matsuo, H. Grimmer, I. Holzer, Y.C. Lu, R. Bandy, C.R. Clayton, R.C. Newman, V.T. Paul, S. Saroja, P. Hariharan, A. Rajadurai, M. Vijayalakshmi, C. Ni, G. Nb, D.C. Montgomery, S. Ukai, T. Nishida, T. Okuda, T. Yoshitake, Z. Guo, W. Sha, R.C. Thomson, H.K.D.H.K.D.H.D.H. Bhadeshia, A. Kipelova, R. Kaibyshev, A. Belyakov, D. Molodov, T. Furuhara, T. Maki, F. Abe, H. Araki, T. Noda, R. Agamennone, W. Blum, C. Gupta, J.K. Chakravartty, H. Chilukuru, K. Durst, S. Wadekar, M. Schwienheer, A. Scholz, C. Berger, K.H. Mayer, W. Blum, J. Li, C.C. Zhang, B. Jiang, L. Zhou, Y.Y.R.Y. Liu, L. Maddi, G.S. Deshmukh, A.R. Ballal, D.R. Peshwe, R.K. Paretkar, K. Laha, M.D. Mathew, M.I. Isik, A. Kostka, V.A. Yardley, K.G. Pradeep, M.J. Duarte, P.P. Choi, D. Raabe, G. Eggeler, Y. Xu, X.Z.X. Zhang, Y.Y. Tian, C. Chen, Y. Nan, H. He, M.M.M. Wang, J.S.J.W. Lee, H. Ghassemi Armaki, K. Maruyama, T. Muraki, H. Asahi, Q. Gao, Y. Zhang, H. Zhang, H.H. Li, F. Qu, J. Han, C. Lu, B. Wu, Y.C. Lu, Y. Ma, M. Taneike, F. Abe, K. Sawada, C.C. Eiselt, H. Schendzielorz, A. Seubert, B. Hary, Y. de Carlan, P. Diano, B. Perrin, D. Cedat, Y. Tsuchida, K. Okamoto, Y. Tokunaga, A.F. Padilha, P.R. Rios, K. Sawada, K. Kubo, F. Abe, P. Fernández, J. Hoffmann, M. Rieth, M. Roldán, A. Gómez-Herrero, M.Y. Kim, S.M. Hong, K.H. Lee, W.S. Jung, Y.S.K. Lee, Y.S.K. Lee, J.H. Shim, H. Motono, M. Yoshinaka, K. Hirota, O. Yamaguchi, B. Wang, W. Fu, Y. Li, P. Jiang, W.Z. Zhang, Y.Y. Tian, J.H. Tan, W.L.E. Wong, K.W. Dalgarno, A. Hardening, G. Zone, B.H. Rabin, G.R. Smolik, G.E. Korth, C. Song, K. Li, K. Xie, W. Lu, S. Zhao, Q. Han, Q. Zhai, E.J. Lavernia, J. Patel, M.H. Jang, J.Y. Kang, J.H. Jang, T.H. Lee, C. Lee, K. Handa, Y. Kimura, Y. Yasumoto, T. Kamioka, Y. Mishima, D.R. Jara, U. Dahmen, K.H. Westmacott, J.-K. Du, C.-Y. Chao, Y.-T. Jhong, C.-H. Wu, J.-H. Wu, A.W. McReynolds, F. Alloys, T. Lechtenberg, B. Fournier, M. Sauzay, A. Pineau, M.N. Batista, S. Hereñú, I. Alvarez- Armas, S. Ahn, N. Kang, T.K. Welding, J. Society, J. Hald, C.R. Das, S.K. Albert, K. Laha, J. Swaminathan, S. Ravi, A.K. Bhaduri, B.S. Murty, P. Mayr, S.D. Yadav, B. Sonderegger, M. Stracey, C. Poletti, D.H. Warrington, P. Bufalini, V.M. Radhakrishnan, F. shi Yin, W.S. Jung, F. Masoumi, L. Thébaud, D. Shahriari, M. Jahazi, J. Cormier, A. Devaux, B.C.D. Flipo, M. Dadé, J. Malaplate, J. Garnier, F. De Geuser, F. Barcelo, P. Wident, A. Deschamps, R. Oruganti, M. Karadge, S. Swaminathan, M. Kimura, K. Yamaguchi, M. Hayakawa, K. Kobayashi, K. Kanazawa, R. Viswanathan, W.T. Bakker, N.S. De Vincentis, M.C. Avalos, E.A. Benatti, A. Kliauga, H.G. Brokmeier, R.E. Bolmaro, P. Us, G. Patents, Y.Y.R.Y. Liu, A. Li, X. Cheng, S.Q. Zhang, H.M. Wang, V. Thomas Paul, S. Saroja, M. Vijayalakshmi, S.S. Wang, D.L. Peng, L. Chang, X.D. Hui, W.B. Jones, C.R. Hills, D.H. Polonis, P. Greenfield, J. Marriott, K. Pithan, X. Tao, C.C. Li, L. Han, J. Gu, L. Han, O.D. Sherby, J. Wadsworth, D.R. Lesuer, C.K. Syn, Z.M. Shi, W. Gong, Y. Tomota, S. Harjo, J. Li, B. Chi, J. Pu, D.C. Saha, E. Biro, A.P. Gerlich, Y. Zhou, L.-E.E. Rännar, A. Koptyug, J. Olsén, K. Saeidi, Z. Shen, J. Hiemenz, K. V. Wong, A. Hernandez, D. Rojas, J. Garcia, O. Prat, L. Agudo, C. Carrasco, G. Sauthoff, A.R. Kaysser-Pyzalla, R.N. Hajra, A.K. Rai, H.P. Tripathy, S. Raju, S. Saroja, F. Abe, H. Araki, T. Noda, H.M. Wang, W. Yan, S. van Zwaag, Q. Shi, W. Wang, K. Yang, Y. Shan, Z.F. Peng, S. Liu, C. Yang, F.Y. Chen, F.F. Peng, H.K. Danielsen, J.D. Robson, H.K.D.H.K.D.H.D.H. Bhadeshia, M. Sauzay, H. Brillet, I. Monnet, M. Mottot, F. Barcelo, B. Fournier, A. Pineau, R.A. Barrett, P.E. O’Donoghue, S.B. Leen, S.D. Yadav, M. El-Tahawy, S. Kalácska, M. Dománková, D.C. Yubero, C. Poletti, S.H. He, B.B. He, K.Y. Zhu, M.X. Huang, H. Chilukuru, E. Plesiutschnig, C. Beal, C. Sommitsch, S. Paul, G. Zeiler, S. Li, G. Zhu, Y. Kang, K. Iwashit, Y. Murata, Y. Tsukada, T. Koyama, R. Viswanathan, W.T. Bakker, D. Arrell, V. Knežević, J. Balun, G. Sauthoff, G. Inden, A. Schneider, 佐々木司、山野優子、松元俊, M. Taneike, F. Abe, K. Sawada, Z. fei Hu, A. Dalmau, C. Richard, A. Igual – Muñoz, M.J. Mullen, A.H. Griebel, J.M. Tartaglia, V. Valasamudram, S.T. Selvamani, M. Vigneshwar, V. Balasubramanian, D. Jayaperumal, C. Loier, C. Leymonie, F. Teroerde, G. Miyamoto, N. Takayama, T. Furuhara, D.P. Field, C.C. Merriman, N. Allain-Bonasso, F. Wagner, J. Jiang, T.B. Britton, A.J. Wilkinson, H. Kitahara, R. Ueji, N. Tsuji, Y. Minamino, D.P. Field, C.C. Merriman, J.M. Smith, X.Z.X. Zhang, G. Miyamoto, Y. Toji, S. Nambu, T. Koseki, T. Furuhara, X. Wang, Q. Xu, S.M. Yu, L. Hu, H.H. Liu, Y.Y. Ren, A.J. DeArdo, C. Cayron, L.P. Karjalainen, P.P. Suikkanen, J. Park, M. Kang, S.S. Sohn, S.W.S.H. Kim, H.S. Kim, N.J. Kim, S. Lee, N. Saeidi, F. Ashrafizadeh, B. Niroumand, F. Barlat, R. Hossain, F. Pahlevani, M.Z. Quadir, V. Sahajwalla, X.Z.X. Zhang, X.J. Wu, R. Liu, J. Liu, M.X. Yao, M. Changes, N. Saeidi, F. Ashrafizadeh, B. Niroumand, F. Barlat, S. Morito, X. Huang, T. Furuhara, T. Maki, N. Hansen, J. Hou, Q.J. Peng, T. Shoji, J.Q. Wang, E.H. Han, W. Ke, L. Korcakova, J. Hald, M.A.J. Somers, B. Sonderegger, S. Mitsche, H. Cerjak, M. Yaso, S. Hayashi, S. Morito, T. Ohba, K. Kubota, K. Murakami, M. Hayakawa, K. Yamaguchi, M. Kimura, K. Kobayashi, V.A. Yardley, R. Sugiura, T. Matsuzaki, S. Tsurekawa, J. Yokobori, Y. Hasegawa, S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, H.J. Maier, A. Safdar, L.Y. Wei, A. Snis, Z. Lai, N. Hrabe, T. Quinn, J. Romano, L. Ladani, J. Razmi, M. Sadowski, a N. Kalinyuk, N.P. Trigub, V.N. Zamkov, O.M. Ivasishin, P.E. Markovsky, R. V Teliovich, S.L. Semiatin, P. Wang, X. Tan, C. He, M.L.S. Nai, R. Huang, S.B. Tor, J. Wei, S. Singh, S. Ramakrishna, R. Singh, N. Raghavan, S.S.S.S. Babu, R.R. Dehoff, S. Pannala, S. Simunovic, M. Kirka, J. Turner, N. Carlson, L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R.F. Medina, R.B. Wicker, U. Ackelid, A. Ab, W.J. Sames, J. Flinspach, N. Béraud, F. Vignat, F. Villeneuve, R. Dendievel, M. Carton, F. Schubert, F. Abe, L. Code, S.S. Wang, L. Chang, L. Wang, T. Wang, Y.D. Wu, J.J. Si, J. Zhu, M.X. Zhang, X.D. Hui, C. Building, S.S. Wang, L. Chang, L. Wang, T. Wang, Y.D. Wu, J.J. Si, J. Zhu, M.X. Zhang, X.D. Hui, R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul, Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett, J.C. Vaillant, B. Vandenberghe, B. Hahn, H. Heuser, C. Jochum, R.L. Klueh, D.R. Harries, J. He, A. Bandyopadhyay, K.D. Traxel, A.L. Bowman, G.P. Arnold, E.K. Storms, N.G. Nereson, Z.M. Shi, W. Gong, Y. Tomota, S. Harjo, J. Li, B. Chi, J. Pu, M. Galati, L. Iuliano, D.H. Jack, K.H. Jack, J.W. Simmons, I. Fedorova, A. Belyakov, P. Kozlov, V. Skorobogatykh, I. Shenkova, R. Kaibyshev, G.M. Castro Güiza, C.A.S. Oliveira, F.Y. Chen, Z. Cui, J. Chen, G.M. Castro Güiza, C.A.S. Oliveira, M. Galati, L. Iuliano, W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S.S.S. Babu, A. Bandyopadhyay, K.D. Traxel, P. Wang, X. Tan, C. He, M.L.S. Nai, R. Huang, S.B. Tor, J. Wei, H.H. Li, E. Hsu, J. Szpunar, H. Utsunomiya, T. Sakai, O. Tm-, T. Unga, G. Miyamoto, N. Takayama, T. Furuhara, S. Ahn, N. Kang, T.K. Welding, J. Society, P. Krakhmalev, I. Yadroitsava, G. Fredriksson, I. Yadroitsev, J. Karlsson, A. Chatterjee, D. Chakrabarti, A. Moitra, R. Mitra, A.K. Bhaduri, G. Palumbo, K.T. Aust, W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S.S.S. Babu, A. Hemmasian Ettefagh, S. Guo, S. Semboshi, M. Sato, Y. Kaneno, A. Iwase, T. Takasugi, Y. Zhong, L.-E.E. Rännar, L. Liu, A. Koptyug, S. Wikman, J. Olsen, D. Cui, Z. Shen, D. Thesis, S. Pasebani, M. Ghayoor, S. Badwe, H. Irrinki, S. V. Atre, Y.S. Mpa, T. Wang, Y.Y. Zhu, S.Q. Zhang, H.B. Tang, H.M. Wang, F. Yan, W. Xiong, E.J. Faierson, F. Sciammarella, E.J. Faierson, G.B. Olson, X. Xiao, G. Liu, B. Hu, J.Q. Wang, W.W. Ma, Y. Zhong, H.K.D.H.K.D.H.D.H. Bhadeshia, H. Shiratori, T. Fujieda, K. Yamanaka, Y. Koizumi, K. Kuwabara, T. Kato, A. Chiba, F. Abe, S. Nakazawa, H. Araki, T. Noda, A. Fedoseeva, E. Tkachev, V. Dudko, N. Dudova, R. Kaibyshev, Y. Xu, Y. Nie, M.M.M. Wang, W. Li, X. Jin, H.K. Danielsen, J. Hald, T. Ishimoto, K. Hagihara, K. Hisamoto, S.H. Sun, T. Nakano, A.-W. El-Morsy, A.I.Z. Farahat, O. Tm-, C.G. Panait, A. Zielińska-Lipiec, T. Koziel, A. Czyrska-Filemonowicz, A.F. Gourgues-Lorenzon, W. Bendick, Q. Gao, X. Dong, C.C. Li, Z. Lin, X. Yang, M. Dai, T. Unga, C. Wang, M.M.M. Wang, J. Shi, W. Hui, H. Dong, C.C. Zhang, Q. Wang, J. Ren, R. Li, M.M.M. Wang, F. Zhang, K. Sun, F. Siska, L. Stratil, M. Smid, N. Luptakova, T. Zalezak, D. Bartkova, M. Carton, F. Schubert, L.E. Murr, C. Tan, K. Zhou, W.W. Ma, P. Zhang, M. Liu, T. Kuang, M.J. Holzweissig, A. Taube, F. Brenne, M. Schaper, T. Niendorf, V. Randle, I. Fedorova, A. Belyakov, P. Kozlov, V. Skorobogatykh, I. Shenkova, R. Kaibyshev, F. Abe, L. Saraf, C. Körner, S. Figure, L. Code, G. Ribárik, A. F., K. T.-U., V. R., D. Processing, T. Composition, S. Takebayashi, T. Kunieda, N. Yoshinaga, K. Ushioda, S. Ogata, R.D.K. Misra, S. Nayak, S.A. Mali, J.S. Shah, M.C. Somani, L.P. Karjalainen, L. Code, J.H. Shin, J. Jeong, J.S.J.W. Lee, G. Ribárik, K.R. Jo, E.J. Seo, D. Hand Sulistiyo, J.K. Kim, S.W.S.H. Kim, B.C. De Cooman, K. Fujiyama, K. Mori, D. Kaneko, H. Kimachi, T. Saito, R. Ishii, T. Hino, Z. Cong, Y. Murata, T. Ungár, I. Dragomir, Á. Révész, A. Borbély, J. Peŝiĉka, A. Dronhofer, G. Eggeler, F. Abe, T.J. Ruggles, T.M. Rampton, A. Khosravani, D.T. Fullwood, I. Dragomir-Cernatescu, S.D. Yadav, S. Kalácska, M. Dománková, D.C. Yubero, R. Resel, I. Groma, C. Beal, B. Sonderegger, C. Sommitsch, C. Poletti, P. Yan, Z. Liu, H. Bao, Y. Weng, W. Liu, H. Hoseiny, F.G. Caballero, B. Högman, D. San Martin, C. Capdevila, L.G. Nordh, H.O. Andrén, T.L. Johnston, C.E. Feltner, C.-A.A. Gandin, S. Mosbah, T. Volkmann, D.M. Herlach, J. Hemanth, N. Raghavan, S. Simunovic, R.R. Dehoff, A. Plotkowski, J. Turner, M. Kirka, S.S.S.S. Babu, R.N. Caron, G. Krauss, J.E. Test, C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, A. Grybėnas, V. Makarevičius, A. Baltušnikas, I. Lukošiūtė, R. Kriūkienė, M. Song, C. Sun, Z. Fan, Y. Chen, R. Zhu, K.Y. Yu, K.T. Hartwig, H.M. Wang, X.Z.X. Zhang, B. Jiang, M. Wu, M.X. Zhang, F. Zhao, Z. Zhao, Y.Y.R.Y. Liu, G. Krauss, X. Deng, D. Ju, S.C. Kennett, G. Krauss, K.O. Findley, R. Hanna, A. Zoughaib, A. Prasad, S. Mosbah, H. Henein, C.-A.A. Gandin, U. Fritshing, V. Uhlenwinkel, G.M. Janowski, F.S. Biancaniello, S.D. Ridder, L.V.M. Antony, R.G. Reddy, J. Hofstede, J. Valer, J. De Kok, A. Guemes, F. Desrumaux, L. Code, S. Weeks, S. Training, L. Code, J. Dong, K.Y. A. Miyazaki, M. Gunzi, Z. fei Hu, D. hai He, F. Mo, M. Mørup, N. Mikkel, H. Saitoh, K. Ushioda, N. Yoshinaga, W. Yamada, M. Kubota, K. Ushioda, G. Miyamoto, T. Furuhara, A. Stormvinter, G. Miyamoto, T. Furuhara, P. Hedström, A. Borgenstam, ITPP, N. Takayama, G. Miyamoto, T. Furuhara, A. Puype, L. Malerba, N. De Wispelaere, R. Petrov, J. Sietsma, K. Sawada, K. Kimura, F. Abe, P. Yan, Z. Liu, H. Bao, Y. Weng, W. Liu, M.K. Lee, G.H. Kim, K.H. Kim, W.W. Kim, Y.Y.R.Y. Liu, D. Ye, Q.L. Yong, J. Su, K.Y. Zhao, W. Jiang, C. Loier, C. Leymonie, T. Ungár, A. Borbély, T. Film, K. Laha, K.S. Chandravathi, P. Parameswaran, K. Bhanu Sankara Rao, B. Sundman, B. Jansson, J.O. Andersson, W.G. Johnston, T. Lauritzen, J.H. Rosolowski, A.M. Turkalo, T. Moroishi, H. Fujikawa, H. Makiura, L.C. Lim, M.O. Lai, J. Ma, D.O. Northwood, B. Miao, D.O. Northwood, L.C. Lim, M.O. Lai, Y. Shen, H.H. Liu, Z. Shang, Z. Xu, U.E. Klotz, C. Solenthaler, P.J. Uggowitzer, H.G. Armaki, R. Chen, K. Maruyama, M. Igarashi, A. Orlova, J. Bursik, K. Kucharova, V. Sklenicka, M.F. McGuire, Outokumpu, S.S. Wang, L. Chang, L. Wang, T. Wang, Y.D. Wu, J.J. Si, J. Zhu, M.X. Zhang, X.D. Hui, P. Chaudhuri, A. Ghosh, M.S. Gusmão, C. Mota, H.O. Frota, K.S. Chan, M.A. Miller, W. Liang, C. Ellis-Terrell, H. Chen, D. Gu, D. Dai, M. Xia, C. Ma, W.J. Weydanz, B.M. Way, T. Van Buuren, J.R. Dahn, A. Schneider, G. Inden, L. Morsdorf, O. Jeannin, D. Barbier, M. Mitsuhara, D. Raabe, C.C. Tasan, R. Doan, S. Bureau, S. Bureau, S.N. Prasad, P. Rambabu, N.E. Prasad, P. Press, M. Klinger, F. Masuyama, R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul, Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett, J.C. Vaillant, B. Vandenberghe, B. Hahn, H. Heuser, C. Jochum, R.L. Klueh, D.R. Harries, X. Zhou, C. Liu, L. Yu, Y.Y.R.Y. Liu, H.H. Li, J.. P. Kruth, J. He, A. Bandyopadhyay, K.D. Traxel, D. Processing, E.D. Sheets, R.L. Klueh, F. Masuyama, L.M. Anovitz, D.R. Cole, X.F. Gu, T. Furuhara, W.Z. Zhang, S. Morito, H. Yoshida, T. Maki, X. Huang, K. Kimura, N. Ohi, K. Shimazu, T. Matsuo, H. Grimmer, I. Holzer, Y.C. Lu, R. Bandy, C.R. Clayton, R.C. Newman, V.T. Paul, S. Saroja, P. Hariharan, A. Rajadurai, M. Vijayalakshmi, C. Ni, G. Nb, D.C. Montgomery, S. Ukai, T. Nishida, T. Okuda, T. Yoshitake, Z. Guo, W. Sha, R.C. Thomson, H.K.D.H.K.D.H.D.H. Bhadeshia, A. Kipelova, R. Kaibyshev, A. Belyakov, D. Molodov, T. Furuhara, T. Maki, F. Abe, H. Araki, T. Noda, R. Agamennone, W. Blum, C. Gupta, J.K. Chakravartty, H. Chilukuru, K. Durst, S. Wadekar, M. Schwienheer, A. Scholz, C. Berger, K.H. Mayer, W. Blum, J. Li, C.C. Zhang, B. Jiang, L. Zhou, Y.Y.R.Y. Liu, L. Maddi, G.S. Deshmukh, A.R. Ballal, D.R. Peshwe, R.K. Paretkar, K. Laha, M.D. Mathew, M.I. Isik, A. Kostka, V.A. Yardley, K.G. Pradeep, M.J. Duarte, P.P. Choi, D. Raabe, G. Eggeler, Y. Xu, X.Z.X. Zhang, Y.Y. Tian, C. Chen, Y. Nan, H. He, M.M.M. Wang, J.S.J.W. Lee, H. Ghassemi Armaki, K. Maruyama, T. Muraki, H. Asahi, Q. Gao, Y. Zhang, H. Zhang, H.H. Li, F. Qu, J. Han, C. Lu, B. Wu, Y.C. Lu, Y. Ma, M. Taneike, F. Abe, K. Sawada, C.C. Eiselt, H. Schendzielorz, A. Seubert, B. Hary, Y. de Carlan, P. Diano, B. Perrin, D. Cedat, Y. Tsuchida, K. Okamoto, Y. Tokunaga, A.F. Padilha, P.R. Rios, K. Sawada, K. Kubo, F. Abe, P. Fernández, J. Hoffmann, M. Rieth, M. Roldán, A. Gómez-Herrero, M.Y. Kim, S.M. Hong, K.H. Lee, W.S. Jung, Y.S.K. Lee, Y.S.K. Lee, J.H. Shim, H. Motono, M. Yoshinaka, K. Hirota, O. Yamaguchi, B. Wang, W. Fu, Y. Li, P. Jiang, W.Z. Zhang, Y.Y. Tian, J.H. Tan, W.L.E. Wong, K.W. Dalgarno, A. Hardening, G. Zone, B.H. Rabin, G.R. Smolik, G.E. Korth, C. Song, K. Li, K. Xie, W. Lu, S. Zhao, Q. Han, Q. Zhai, E.J. Lavernia, J. Patel, M.H. Jang, J.Y. Kang, J.H. Jang, T.H. Lee, C. Lee, K. Handa, Y. Kimura, Y. Yasumoto, T. Kamioka, Y. Mishima, D.R. Jara, U. Dahmen, K.H. Westmacott, J.-K. Du, C.-Y. Chao, Y.-T. Jhong, C.-H. Wu, J.-H. Wu, A.W. McReynolds, F. Alloys, T. Lechtenberg, B. Fournier, M. Sauzay, A. Pineau, M.N. Batista, S. Hereñú, I. Alvarez- Armas, S. Ahn, N. Kang, T.K. Welding, J. Society, J. Hald, C.R. Das, S.K. Albert, K. Laha, J. Swaminathan, S. Ravi, A.K. Bhaduri, B.S. Murty, P. Mayr, S.D. Yadav, B. Sonderegger, M. Stracey, C. Poletti, D.H. Warrington, P. Bufalini, V.M. Radhakrishnan, F. shi Yin, W.S. Jung, F. Masoumi, L. Thébaud, D. Shahriari, M. Jahazi, J. Cormier, A. Devaux, B.C.D. Flipo, M. Dadé, J. Malaplate, J. Garnier, F. De Geuser, F. Barcelo, P. Wident, A. Deschamps, R. Oruganti, M. Karadge, S. Swaminathan, M. Kimura, K. Yamaguchi, M. Hayakawa, K. Kobayashi, K. Kanazawa, R. Viswanathan, W.T. Bakker, N.S. De Vincentis, M.C. Avalos, E.A. Benatti, A. Kliauga, H.G. Brokmeier, R.E. Bolmaro, P. Us, G. Patents, Y.Y.R.Y. Liu, A. Li, X. Cheng, S.Q. Zhang, H.M. Wang, V. Thomas Paul, S. Saroja, M. Vijayalakshmi, S.S. Wang, D.L. Peng, L. Chang, X.D. Hui, W.B. Jones, C.R. Hills, D.H. Polonis, P. Greenfield, J. Marriott, K. Pithan, X. Tao, C.C. Li, L. Han, J. Gu, L. Han, O.D. Sherby, J. Wadsworth, D.R. Lesuer, C.K. Syn, Z.M. Shi, W. Gong, Y. Tomota, S. Harjo, J. Li, B. Chi, J. Pu, D.C. Saha, E. Biro, A.P. Gerlich, Y. Zhou, L.-E.E. Rännar, A. Koptyug, J. Olsén, K. Saeidi, Z. Shen, J. Hiemenz, K. V. Wong, A. Hernandez, D. Rojas, J. Garcia, O. Prat, L. Agudo, C. Carrasco, G. Sauthoff, A.R. Kaysser-Pyzalla, R.N. Hajra, A.K. Rai, H.P. Tripathy, S. Raju, S. Saroja, F. Abe, H. Araki, T. Noda, H.M. Wang, W. Yan, S. van Zwaag, Q. Shi, W. Wang, K. Yang, Y. Shan, Z.F. Peng, S. Liu, C. Yang, F.Y. Chen, F.F. Peng, H.K. Danielsen, J.D. Robson, H.K.D.H.K.D.H.D.H. Bhadeshia, M. Sauzay, H. Brillet, I. Monnet, M. Mottot, F. Barcelo, B. Fournier, A. Pineau, R.A. Barrett, P.E. O’Donoghue, S.B. Leen, S.D. Yadav, M. El-Tahawy, S. Kalácska, M. Dománková, D.C. Yubero, C. Poletti, S.H. He, B.B. He, K.Y. Zhu, M.X. Huang, H. Chilukuru, E. Plesiutschnig, C. Beal, C. Sommitsch, S. Paul, G. Zeiler, S. Li, G. Zhu, Y. Kang, K. Iwashit, Y. Murata, Y. Tsukada, T. Koyama, R. Viswanathan, W.T. Bakker, D. Arrell, V. Knežević, J. Balun, G. Sauthoff, G. Inden, A. Schneider, 佐々木司、山野優子、松元俊, M. Taneike, F. Abe, K. Sawada, Z. fei Hu, A. Dalmau, C. Richard, A. Igual – Muñoz, M.J. Mullen, A.H. Griebel, J.M. Tartaglia, V. Valasamudram, S.T. Selvamani, M. Vigneshwar, V. Balasubramanian, D. Jayaperumal, C. Loier, C. Leymonie, F. Teroerde, G. Miyamoto, N. Takayama, T. Furuhara, D.P. Field, C.C. Merriman, N. Allain-Bonasso, F. Wagner, J. Jiang, T.B. Britton, A.J. Wilkinson, H. Kitahara, R. Ueji, N. Tsuji, Y. Minamino, D.P. Field, C.C. Merriman, J.M. Smith, X.Z.X. Zhang, G. Miyamoto, Y. Toji, S. Nambu, T. Koseki, T. Furuhara, X. Wang, Q. Xu, S.M. Yu, L. Hu, H.H. Liu, Y.Y. Ren, A.J. DeArdo, C. Cayron, L.P. Karjalainen, P.P. Suikkanen, J. Park, M. Kang, S.S. Sohn, S.W.S.H. Kim, H.S. Kim, N.J. Kim, S. Lee, N. Saeidi, F. Ashrafizadeh, B. Niroumand, F. Barlat, R. Hossain, F. Pahlevani, M.Z. Quadir, V. Sahajwalla, X.Z.X. Zhang, X.J. Wu, R. Liu, J. Liu, M.X. Yao, M. Changes, N. Saeidi, F. Ashrafizadeh, B. Niroumand, F. Barlat, S. Morito, X. Huang, T. Furuhara, T. Maki, N. Hansen, J. Hou, Q.J. Peng, T. Shoji, J.Q. Wang, E.H. Han, W. Ke, L. Korcakova, J. Hald, M.A.J. Somers, B. Sonderegger, S. Mitsche, H. Cerjak, M. Yaso, S. Hayashi, S. Morito, T. Ohba, K. Kubota, K. Murakami, M. Hayakawa, K. Yamaguchi, M. Kimura, K. Kobayashi, V.A. Yardley, R. Sugiura, T. Matsuzaki, S. Tsurekawa, J. Yokobori, Y. Hasegawa, S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, H.J. Maier, A. Safdar, L.Y. Wei, A. Snis, Z. Lai, N. Hrabe, T. Quinn, J. Romano, L. Ladani, J. Razmi, M. Sadowski, a N. Kalinyuk, N.P. Trigub, V.N. Zamkov, O.M. Ivasishin, P.E. Markovsky, R. V Teliovich, S.L. Semiatin, P. Wang, X. Tan, C. He, M.L.S. Nai, R. Huang, S.B. Tor, J. Wei, S. Singh, S. Ramakrishna, R. Singh, N. Raghavan, S.S.S.S. Babu, R.R. Dehoff, S. Pannala, S. Simunovic, M. Kirka, J. Turner, N. Carlson, L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R.F. Medina, R.B. Wicker, U. Ackelid, A. Ab, W.J. Sames, J. Flinspach, N. Béraud, F. Vignat, F. Villeneuve, R. Dendievel, U.E. Klotz, C. Solenthaler, P.J. Uggowitzer, R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul, Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett, J.C. Vaillant, B. Vandenberghe, B. Hahn, H. Heuser, C. Jochum, R.L. Klueh, D.R. Harries, X. Zhou, C. Liu, L. Yu, Y.Y.R.Y. Liu, H.H. Li, J.. P. Kruth, J. He, E.D. Sheets, R.L. Klueh, L.M. Anovitz, D.R. Cole, J.S.J.W. Lee, H. Ghassemi Armaki, K. Maruyama, T. Muraki, H. Asahi, P. Greenfield, J. Marriott, K. Pithan, R. Viswanathan, W.T. Bakker, D. Arrell, Z. fei Hu, Microstructural stability and short-term creep properties of 12Cr-W-Mo-Co steel, Mater. Sci. Eng. A. (2016). doi:10.1016/j.msea.2014.11.024.
[193] M. Jafari, M. Jamshidian, S. Ziaei-Rad, D. Raabe, F. Roters, Constitutive modeling of strain induced grain boundary migration via coupling crystal plasticity and phase-field methods, Int. J. Plast. 99 (2017) 19–42. doi:10.1016/j.ijplas.2017.08.004.
[194] E.A. Jägle, P.P. Choi, J. Van Humbeeck, D. Raabe, Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting, J. Mater. Res. 29 (2014) 2072–2079. doi:10.1557/jmr.2014.204.
[195] E.A. Jägle, Z. Sheng, P. Kürnsteiner, S. Ocylok, A. Weisheit, D. Raabe, Comparison of maraging steel micro- and nanostructure produced conventionally and by laser additive manufacturing, Materials (Basel). 10 (2017). doi:10.3390/ma10010008.
[196] E.A. Jägle, Z. Sheng, L. Wu, L. Lu, J. Risse, A. Weisheit, D. Raabe, Precipitation Reactions in Age-Hardenable Alloys During Laser Additive Manufacturing, JOM. 68 (2016) 943–949. doi:10.1007/s11837-015-1764-2.
[197] E.A. Jägle, P.P. Choi, D. Raabe, The maximum separation cluster analysis algorithm for atom-probe tomography: Parameter determination and accuracy, Microsc. Microanal. 20 (2014) 1662–1671. doi:10.1017/S1431927614013294.
[198] J. Jia, D. Raabe, Evolution of crystallinity and of crystallographic orientation in isotactic polypropylene during rolling and heat treatment, Eur. Polym. J. 42 (2006) 1755–1766. doi:10.1016/j.eurpolymj.2006.02.013.
[199] N. Jia, P. Eisenlohr, F. Roters, D. Raabe, X. Zhao, Orientation dependence of shear banding in face-centered-cubic single crystals, Acta Mater. 60 (2012) 3415–3434. doi:10.1016/j.actamat.2012.03.005.
[200] N. Jia, D. Raabe, X. Zhao, Crystal plasticity modeling of size effects in rolled multilayered Cu-Nb composites, Acta Mater. 111 (2016) 116–128. doi:10.1016/j.actamat.2016.03.055.
[201] N. Jia, D. Raabe, X. Zhao, Texture and microstructure evolution during non-crystallographic shear banding in a plane strain compressed Cu-Ag metal matrix composite, Acta Mater. 76 (2014) 238–251. doi:10.1016/j.actamat.2014.05.036.
[202] N. Jia, F. Roters, P. Eisenlohr, C. Kords, D. Raabe, Non-crystallographic shear banding in crystal plasticity FEM simulations: Example of texture evolution in α-brass, Acta Mater. 60 (2012) 1099–1115. doi:10.1016/j.actamat.2011.10.047.
[203] N. Jia, F. Roters, P. Eisenlohr, D. Raabe, X. Zhao, Simulation of shear banding in heterophase co-deformation: Example of plane strain compressed Cu-Ag and Cu-Nb metal matrix composites, Acta Mater. 61 (2013) 4591–4606. doi:10.1016/j.actamat.2013.04.029.
[204] S. Jiang, H. Wang, Y. Wu, X. Liu, H. Chen, M. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M. Chen, Y. Wang, Z. Lu, Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation, Nature. 544 (2017) 460–464. doi:10.1038/nature22032.
[205] P. Juntunen, P. Karjalainen, D. Raabe, G. Bolle, T. Kopio, Optimizing continuous annealing of interstitial-free steels for improving deep drawability, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 32 (2001) 1989–1995. doi:10.1007/s11661-001-0011-3.
[206] J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, M. Calcagnotto, Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels, Acta Mater. 59 (2011) 4387–4394. doi:10.1016/j.actamat.2011.03.062.
[207] R. Kapoor, A. Sarkar, J. Singh, I. Samajdar, D. Raabe, Effect of strain rate on twinning in a Zr alloy, Scr. Mater. 74 (2014) 72–75. doi:10.1016/j.scriptamat.2013.10.025.
[208] S. Katnagallu, M. Dagan, S. Parviainen, A. Nematollahi, B. Grabowski, P.A.J. Bagot, N. Rolland, J. Neugebauer, D. Raabe, F. Vurpillot, M.P. Moody, B. Gault, Impact of local electrostatic field rearrangement on field ionization, J. Phys. D. Appl. Phys. 51 (2018). doi:10.1088/1361-6463/aaaba6.
[209] S. Katnagallu, B. Gault, B. Grabowski, J. Neugebauer, D. Raabe, A. Nematollahi, Advanced data mining in field ion microscopy, Mater. Charact. 146 (2018) 307–318. doi:10.1016/j.matchar.2018.02.040.
[210] S. Katnagallu, A. Nematollahi, M. Dagan, M. Moody, B. Grabowski, B. Gault, D. Raabe, J. Neugebauer, High Fidelity Reconstruction of Experimental Field Ion Microscopy Data by Atomic Relaxation Simulations, Microsc. Microanal. 23 (2017) 642–643. doi:10.1017/s1431927617003877.
[211] S. Katnagallu, L.T. Stephenson, I. Mouton, C. Freysoldt, R. Drautz, J. Neugebauer, F. Vurpillot, D. Raabe, Imaging individual solute atoms at crystalline imperfections in metals, ArXiv E-Prints. 1903.03288 (2019) 1–18.
[212] A. Khorashadizadeh, D. Raabe, S. Zaefferer, G.S. Rohrer, A.D. Rollett, M. Winning, Five-parameter grain boundary analysis by 3D EBSD of an ultra fine grained CuZr alloy processed by equal channel angular pressing, Adv. Eng. Mater. 13 (2011) 237–244. doi:10.1002/adem.201000259.
[213] A. Khorashadizadeh, D. Raabe, M. Winning, R. Pippan, Recrystallization and grain growth in ultrafine-grained materials produced by high pressure torsion, Adv. Eng. Mater. 13 (2011) 245–250. doi:10.1002/adem.201000253.
[214] A. Khorashadizadeh, D. Raabe, M. Winning, R. Pippan, Recrystallization and grain growth in ultrafine-grained materials produced by high pressure torsion, Adv. Eng. Mater. 13 (2011) 245–250. doi:10.1002/adem.201000253.
[215] A. Khorashadizadeh, M. Winning, D. Raabe, 3D tomographic EBSD measurements of heavily deformed ultra fine grained Cu-0.17wt%Zr obtained from ECAP, in: Mater. Sci. Forum, 2008: pp. 434–439. doi:10.4028/www.scientific.net/msf.584-586.434.
[216] J.K. Kim, W. Guo, P.P. Choi, D. Raabe, Compositional evolution of long-period stacking ordered structures in magnesium studied by atom probe tomography, Scr. Mater. 156 (2018) 55–59. doi:10.1016/j.scriptamat.2018.07.017.
[217] J.K. Kim, L. Jin, S. Sandlöbes, D. Raabe, Diffusional-displacive transformation enables formation of long-period stacking order in magnesium, Sci. Rep. 7 (2017) 1–8. doi:10.1038/s41598-017-04343-y.
[218] J.K. Kim, W.S. Ko, S. Sandlöbes, M. Heidelmann, B. Grabowski, D. Raabe, The role of metastable LPSO building block clusters in phase transformations of an Mg-Y-Zn alloy, Acta Mater. 112 (2016) 171–183. doi:10.1016/j.actamat.2016.04.016.
[219] J.K. Kim, S. Sandlöbes, D. Raabe, On the room temperature deformation mechanisms of a Mg-Y-Zn alloy with long-period-stacking-ordered structures, Acta Mater. 82 (2015) 414–423. doi:10.1016/j.actamat.2014.09.036.
[220] J. Kim, H.S. Oh, W. Kim, P.P. Choi, D. Raabe, E.S. Park, Modulation of plastic flow in metallic glasses via nanoscale networks of chemical heterogeneities, Acta Mater. 140 (2017) 116–129. doi:10.1016/j.actamat.2017.08.002.
[221] J.H. Kim, B.K. Kim, D.I. Kim, P.P. Choi, D. Raabe, K.W. Yi, The role of grain boundaries in the initial oxidation behavior of austenitic stainless steel containing alloyed Cu at 700°C for advanced thermal power plant applications, Corros. Sci. 96 (2015) 52–66. doi:10.1016/j.corsci.2015.03.014.
[222] C. Klinkenberg, D. Raabe, K. Lücke, Effects of volume fraction and dispersion rate of grain boundary cementite on the recrystallization textures of low carbon steel, Scr. Metall. Mater. 26 (1992) 1137–1141. doi:10.1016/0956-716X(92)90243-8.
[223] C. Klinkenberg, D. Raabe, K. Lucke, Influence of volume fraction and dispersion rate of grain-boundary cementite on the cold-rolling textures of low-carbon steel, Steel Res. 63 (1992) 263–269. doi:10.1002/srin.199200512.
[224] H. Knoll, S. Ocylok, A. Weisheit, H. Springer, E. Jägle, D. Raabe, Combinatorial Alloy Design by Laser Additive Manufacturing, Steel Res. Int. 88 (2017) 1–11. doi:10.1002/srin.201600416.
[225] S. Kobayashi, S. Zaefferer, A. Schneider, D. Raabe, G. Frommeyer, Optimisation of precipitation for controlling recrystallisation of wrought Fe3Al based alloys, in: Intermetallics, 2005: pp. 1296–1303. doi:10.1016/j.intermet.2004.10.016.
[226] S. Kobayashi, S. Zaefferer, A. Schneider, D. Raabe, G. Frommeyer, Slip system determination by rolling texture measurements around the strength peak temperature in a Fe3Al-based alloy, Mater. Sci. Eng. A. 387–389 (2004) 950–954. doi:10.1016/j.msea.2004.02.086.
[227] S. Kobayashi, A. Schneider, S. Zaefferer, G. Frommeyer, D. Raabe, Phase equilibria among α-Fe(Al, Cr, Ti), liquid and TiC and the formation of TiC in Fe3Al-based alloys, Acta Mater. 53 (2005) 3961–3970. doi:10.1016/j.actamat.2005.04.044.
[228] S. Kobayashi, S. Zaefferer, D. Raabe, The relative importance of nucleation vs. growth for recrystallisation in particle-containing Fe3Al alloys, in: Mater. Sci. Forum, 2007: pp. 345–350. doi:10.4028/0-87849-434-0.345.
[229] S. Kobayashi, S. Zaefferer, A. Schneider, D. Raabe, G. Frommeyer, Effect of the Degree of Order and the Deformation Microstructure on the Kinetics of Recrystallisation in a Fe3Al Ordered Alloy, Mater. Sci. Forum. 467–470 (2009) 153–158. doi:10.4028/www.scientific.net/msf.467-470.153.
[230] S. Kobayashi, C. Zambaldi, D. Raabe, Orientation dependence of local lattice rotations at precipitates: Example of κ-Fe3AlC carbides in a Fe3Al-based alloy, Acta Mater. 58 (2010) 6672–6684. doi:10.1016/j.actamat.2010.08.030.
[231] M. Kolb, L.P. Freund, F. Fischer, I. Povstugar, S.K. Makineni, B. Gault, D. Raabe, J. Müller, E. Spiecker, S. Neumeier, M. Göken, On the grain boundary strengthening effect of boron in γ/γ′ Cobalt-base superalloys, Acta Mater. 145 (2018) 247–254. doi:10.1016/j.actamat.2017.12.020.
[232] P.J. Konijnenberg, S. Zaefferer, D. Raabe, Assessment of geometrically necessary dislocation levels derived by 3D EBSD, Acta Mater. 99 (2015) 402–414. doi:10.1016/j.actamat.2015.06.051.
[233] J. Konrad, S. Zaefferer, D. Raabe, Investigation of orientation gradients around a hard Laves particle in a warm-rolled Fe3Al-based alloy using a 3D EBSD-FIB technique, Acta Mater. 54 (2006) 1369–1380. doi:10.1016/j.actamat.2005.11.015.
[234] J. Konrad, S. Zaefferer, A. Schneider, D. Raabe, G. Frommeyer, Hot deformation behavior of a Fe3Al-binary alloy in the A2 and B2-order regimes, in: Intermetallics, 2005: pp. 1304–1312. doi:10.1016/j.intermet.2004.10.017.
[235] P. Kontis, M. Köhler, S. Evertz, Y.T. Chen, V. Schnabel, R. Soler, J. Bednarick, C. Kirchlechner, G. Dehm, D. Raabe, J.M. Schneider, B. Gault, Nano-laminated thin film metallic glass design for outstanding mechanical properties, Scr. Mater. 155 (2018) 73–77. doi:10.1016/j.scriptamat.2018.06.015.
[236] P. Kontis, E. Chauvet, Z. Peng, J. He, A.K. da Silva, D. Raabe, C. Tassin, J.-J. Blandin, S. Abed, R. Dendievel, B. Gault, G. Martin, Atomic-scale grain boundary engineering to overcome hot-cracking in additively-manufactured superalloys, Acta Mater. 177 (2019) 209–221. doi:10.1016/j.actamat.2019.07.041.
[237] P. Kontis, D.M. Collins, A.J. Wilkinson, R.C. Reed, D. Raabe, B. Gault, Microstructural degradation of polycrystalline superalloys from oxidized carbides and implications on crack initiation, Scr. Mater. 147 (2018) 59–63. doi:10.1016/j.scriptamat.2017.12.028.
[238] P. Kontis, A. Kostka, D. Raabe, B. Gault, Influence of composition and precipitation evolution on damage at grain boundaries in a crept polycrystalline Ni-based superalloy, Acta Mater. 166 (2019) 158–167. doi:10.1016/j.actamat.2018.12.039.
[239] P. Kontis, Z. Li, D.M. Collins, J. Cormier, D. Raabe, B. Gault, The effect of chromium and cobalt segregation at dislocations on nickel-based superalloys, Scr. Mater. 145 (2018) 76–80. doi:10.1016/j.scriptamat.2017.10.005.
[240] P. Kontis, Z. Li, M. Segersäll, J.J. Moverare, R.C. Reed, D. Raabe, B. Gault, The Role of Oxidized Carbides on Thermal-Mechanical Performance of Polycrystalline Superalloys, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 49 (2018) 4236–4245. doi:10.1007/s11661-018-4709-x.
[241] A. Koprek, O. Cojocaru-Miredin, R. Wuerz, C. Freysoldt, B. Gault, D. Raabe, Cd and Impurity Redistribution at the CdS/CIGS Interface after Annealing of CIGS-Based Solar Cells Resolved by Atom Probe Tomography, IEEE J. Photovoltaics. 7 (2017) 313–321. doi:10.1109/JPHOTOV.2016.2629841.
[242] M. Koyama, E. Akiyama, Y.K. Lee, D. Raabe, K. Tsuzaki, Overview of hydrogen embrittlement in high-Mn steels, Int. J. Hydrogen Energy. 42 (2017) 12706–12723. doi:10.1016/j.ijhydene.2017.02.214.
[243] M. Koyama, E. Akiyama, T. Sawaguchi, D. Raabe, K. Tsuzaki, Hydrogen-induced cracking at grain and twin boundaries in an Fe-Mn-C austenitic steel, Scr. Mater. 66 (2012) 459–462. doi:10.1016/j.scriptamat.2011.12.015.
[244] M. Koyama, E. Akiyama, K. Tsuzaki, D. Raabe, Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hydrogen charging by electron channeling contrast imaging, Acta Mater. 61 (2013) 4607–4618. doi:10.1016/j.actamat.2013.04.030.
[245] M. Koyama, A. Bashir, M. Rohwerder, S. V. Merzlikin, E. Akiyama, K. Tsuzaki, D. Raabe, Spatially and kinetically resolved mapping of hydrogen in a twinning-induced plasticity steel by use of Scanning Kelvin Probe Force Microscopy, J. Electrochem. Soc. 162 (2015) C638–C647. doi:10.1149/2.0131512jes.
[246] M. Koyama, M. Rohwerder, C.C. Tasan, A. Bashir, E. Akiyama, K. Takai, D. Raabe, K. Tsuzaki, Recent progress in microstructural hydrogen mapping in steels: quantification, kinetic analysis, and multi-scale characterisation, Mater. Sci. Technol. (United Kingdom). 33 (2017) 1481–1496. doi:10.1080/02670836.2017.1299276.
[247] M. Koyama, H. Springer, S. V. Merzlikin, K. Tsuzaki, E. Akiyama, D. Raabe, Hydrogen embrittlement associated with strain localization in a precipitation-hardened Fe-Mn-Al-C light weight austenitic steel, Int. J. Hydrogen Energy. 39 (2014) 4634–4646. doi:10.1016/j.ijhydene.2013.12.171.
[248] M. Koyama, C.C. Tasan, E. Akiyama, K. Tsuzaki, D. Raabe, Hydrogen-assisted decohesion and localized plasticity in dual-phase steel, Acta Mater. 70 (2014) 174–187. doi:10.1016/j.actamat.2014.01.048.
[249] M. Koyama, C.C. Tasan, T. Nagashima, E. Akiyama, D. Raabe, K. Tsuzaki, Hydrogen-assisted damage in austenite/martensite dual-phase steel, Philos. Mag. Lett. 96 (2016) 9–18. doi:10.1080/09500839.2015.1130275.
[250] M. Koyama, Z. Zhang, M. Wang, D. Ponge, D. Raabe, K. Tsuzaki, H. Noguchi, C.C. Tasan, Bone-like crack resistance in hierarchical metastable nanolaminate steels, Science (80-. ). 355 (2017) 1055–1057. doi:10.1126/science.aal2766.
[251] M. Kraska, M. Doig, D. Tikhomirov, D. Raabe, F. Roters, Virtual material testing for stamping simulations based on polycrystal plasticity, Comput. Mater. Sci. 46 (2009) 383–392. doi:10.1016/j.commatsci.2009.03.025.
[252] F.F. Krause, J.-P.P. Ahl, D. Tytko, P.-P.P. Choi, R. Egoavil, M. Schowalter, T. Mehrtens, K. Müller-Caspary, J. Verbeeck, D. Raabe, J. Hertkorn, K. Engl, A. Rosenauer, Homogeneity and composition of AlInGaN: A multiprobe nanostructure study, Ultramicroscopy. 156 (2015) 29–36. doi:10.1016/j.ultramic.2015.04.012.
[253] T. Kresse, Y.J. Li, T. Boll, C. Borchers, P. Choi, T. Al-Kassab, D. Raabe, R. Kirchheim, Influence of supersaturated carbon on the diffusion of Ni in ferrite determined by atom probe tomography, Scr. Mater. 69 (2013) 424–427. doi:10.1016/j.scriptamat.2013.05.039.
[254] T. Krüger, F. Varnik, D. Raabe, Second-order convergence of the deviatoric stress tensor in the standard Bhatnagar-Gross-Krook lattice Boltzmann method, Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 82 (2010) 1–4. doi:10.1103/PhysRevE.82.025701.
[255] T. Krüger, F. Varnik, D. Raabe, Particle stress in suspensions of soft objects, in: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2011: pp. 2414–2421. doi:10.1098/rsta.2011.0090.
[256] T. Krüger, F. Varnik, D. Raabe, Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method, Comput. Math. with Appl. 61 (2011) 3485–3505. doi:10.1016/j.camwa.2010.03.057.
[257] T. Krüger, F. Varnik, D. Raabe, Shear stress in lattice Boltzmann simulations, Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 79 (2009) 1–14. doi:10.1103/PhysRevE.79.046704.
[258] C. Krywka, C. Sternemann, M. Paulus, N. Javid, R. Winter, A. Al-Sawalmih, S. Yi, D. Raabe, M. Tolan, The small-angle and wide-angle X-ray scattering set-up at beamline BL9 of DELTA, J. Synchrotron Radiat. 14 (2007) 244–251. doi:10.1107/S0909049507009727.
[259] D. Kumar, T.R. Bieler, P. Eisenlohr, D.E. Mason, M.A. Crimp, F. Roters, D. Raabe, On predicting nucleation of microcracks due to slip-twin interactions at grain boundaries in duplex near γ-TiAl, in: J. Eng. Mater. Technol. Trans. ASME, 2008: pp. 0210121–02101212. doi:10.1115/1.2841620.
[260] J. Kundin, D. Raabe, H. Emmerich, A phase-field model for incoherent martensitic transformations including plastic accommodation processes in the austenite, J. Mech. Phys. Solids. 59 (2011) 2082–2102. doi:10.1016/j.jmps.2011.07.001.
[261] J.C. Kuo, S. Zaefferer, Z. Zhao, M. Winning, D. Raabe, Deformation Behavior of Aluminum Bicrystals, Adv. Eng. Mater. 5 (2003) 563–566. doi:10.1002/adem.200300372.
[262] P. Kürnsteiner, A. Hariharan, H.Y. Jung, N. Peter, M.B. Wilms, A. Weisheit, P. Barriobero-Vila, B. Gault, D. Raabe, E.A. Jägle, Application of Atom Probe Tomography to Complex Microstructures of Laser Additively Manufactured Samples, Microsc. Microanal. 25 (2019) 2514–2515. doi:10.1017/s1431927619013308.
[263] P. Kürnsteiner, M.B. Wilms, A. Weisheit, P. Barriobero-Vila, E.A. Jägle, D. Raabe, Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition, Acta Mater. 129 (2017) 52–60. doi:10.1016/j.actamat.2017.02.069.
[264] P. Kürnsteiner, M.B. Wilms, A. Weisheit, P. Barriobero-Vila, B. Gault, E.A. Jägle, D. Raabe, In-process Precipitation During Laser Additive Manufacturing Investigated by Atom Probe Tomography, Microsc. Microanal. 23 (2017) 694–695. doi:10.1017/s1431927617004135.
[265] M. Kuzmina, M. Herbig, D. Ponge, S. Sandlöbes, D. Raabe, Linear complexions: Confined chemical and structural states at dislocations, Science (80-. ). 349 (2015) 1080–1083. doi:10.1126/science.aab2633.
[266] M. Kuzmina, D. Ponge, D. Raabe, Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: Example of a 9 wt.% medium Mn steel, Acta Mater. 86 (2015) 182–192. doi:10.1016/j.actamat.2014.12.021.
[267] A. Kwiatkowski da Silva, G. Inden, A. Kumar, D. Ponge, B. Gault, D. Raabe, Competition between formation of carbides and reversed austenite during tempering of a medium-manganese steel studied by thermodynamic-kinetic simulations and atom probe tomography, Acta Mater. 147 (2018) 165–175. doi:10.1016/j.actamat.2018.01.022.
[268] A. Kwiatkowski da Silva, R.D. Kamachali, D. Ponge, B. Gault, J. Neugebauer, D. Raabe, Thermodynamics of grain boundary segregation, interfacial spinodal and their relevance for nucleation during solid-solid phase transitions, Acta Mater. 168 (2019) 109–120. doi:10.1016/j.actamat.2019.02.005.
[269] A. Kwiatkowski da Silva, G. Leyson, M. Kuzmina, D. Ponge, M. Herbig, S. Sandlöbes, B. Gault, J. Neugebauer, D. Raabe, Confined chemical and structural states at dislocations in Fe-9wt%Mn steels: A correlative TEM-atom probe study combined with multiscale modelling, Acta Mater. 124 (2017) 305–315. doi:10.1016/j.actamat.2016.11.013.
[270] A. Kwiatkowski Da Silva, D. Ponge, Z. Peng, G. Inden, Y. Lu, A. Breen, B. Gault, D. Raabe, Phase nucleation through confined spinodal fluctuations at crystal defects evidenced in Fe-Mn alloys, Nat. Commun. 9 (2018) 1–11. doi:10.1038/s41467-018-03591-4.
[271] M.J. Lai, C.C. Tasan, D. Raabe, On the mechanism of {332} twinning in metastable β titanium alloys, Acta Mater. 111 (2016) 173–186. doi:10.1016/j.actamat.2016.03.040.
[272] M.J. Lai, T. Li, D. Raabe, ω phase acts as a switch between dislocation channeling and joint twinning- and transformation-induced plasticity in a metastable β titanium alloy, Acta Mater. 151 (2018) 67–77. doi:10.1016/j.actamat.2018.03.053.
[273] M.J. Lai, Y.J. Li, L. Lillpopp, D. Ponge, S. Will, D. Raabe, On the origin of the improvement of shape memory effect by precipitating VC in Fe–Mn–Si-based shape memory alloys, Acta Mater. 155 (2018) 222–235. doi:10.1016/j.actamat.2018.06.008.
[274] M.J. Lai, C.C. Tasan, D. Raabe, On the mechanism of {332} twinning in metastable β titanium alloys, Acta Mater. 111 (2016) 173–186. doi:10.1016/j.actamat.2016.03.040.
[275] M.J. Lai, C.C. Tasan, D. Raabe, Deformation mechanism of ω-enriched Ti-Nb-based gum metal: Dislocation channeling and deformation induced ω-β transformation, Acta Mater. 100 (2015) 290–300. doi:10.1016/j.actamat.2015.08.047.
[276] M.J. Lai, C.C. Tasan, J. Zhang, B. Grabowski, L.F. Huang, D. Raabe, Origin of shear induced β to ω transition in Ti-Nb-based alloys, Acta Mater. 92 (2015) 55–63. doi:10.1016/j.actamat.2015.03.040.
[277] Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T.G. Nieh, Z. Lu, Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature. 563 (2018) 546–550. doi:10.1038/s41586-018-0685-y.
[278] B. Lemmens, H. Springer, I. De Graeve, J. De Strycker, D. Raabe, K. Verbeken, Effect of silicon on the microstructure and growth kinetics of intermetallic phases formed during hot-dip aluminizing of ferritic steel, Surf. Coatings Technol. 319 (2017) 104–109. doi:10.1016/j.surfcoat.2017.03.040.
[279] B. Lemmens, H. Springer, M.J. Duarte, I. De Graeve, J. De Strycker, D. Raabe, K. Verbeken, Atom probe tomography of intermetallic phases and interfaces formed in dissimilar joining between Al alloys and steel, Mater. Charact. 120 (2016) 268–272. doi:10.1016/j.matchar.2016.09.008.
[280] B. Lemmens, H. Springer, M. Peeters, I. De Graeve, J. De Strycker, D. Raabe, K. Verbeken, Deformation induced degradation of hot-dip aluminized steel, Mater. Sci. Eng. A. 710 (2018) 385–391. doi:10.1016/j.msea.2017.10.094.
[281] F. Li, A.A. Barani, D. Ponge, D. Raabe, Austenite grain coarsening behaviour in a medium carbon Si-Cr spring steel with and without vanadium, Steel Res. Int. 77 (2006) 590–594. doi:10.1002/srin.200606434.
[282] J. Li, W. Lu, J. Gibson, S. Zhang, T. Chen, S. Korte-Kerzel, D. Raabe, Eliminating deformation incompatibility in composites by gradient nanolayer architectures, Sci. Rep. 8 (2018) 1–9. doi:10.1038/s41598-018-34369-9.
[283] J. Li, W. Lu, S. Zhang, D. Raabe, Large strain synergetic material deformation enabled by hybrid nanolayer architectures, Sci. Rep. 7 (2017) 1–10. doi:10.1038/s41598-017-11001-w.
[284] L. Li, Z. Li, A. Kwiatkowski da Silva, Z. Peng, H. Zhao, B. Gault, D. Raabe, Segregation-driven grain boundary spinodal decomposition as a pathway for phase nucleation in a high-entropy alloy, Acta Mater. 178 (2019) 1–9. doi:10.1016/j.actamat.2019.07.052.
[285] L. Li, Z. Li, A. Kwiatkowski da Silva, Z. Peng, H. Zhao, B. Gault, D. Raabe, Segregation-driven grain boundary spinodal decomposition as a pathway for phase nucleation in a high-entropy alloy, Acta Mater. 178 (2019) 1–9. doi:10.1016/j.actamat.2019.07.052.
[286] Q. Li, F.K. Yan, N.R. Tao, D. Ponge, D. Raabe, K. Lu, Deformation compatibility between nanotwinned and recrystallized grains enhances resistance to interface cracking in cyclic loaded stainless steel, Acta Mater. 165 (2019) 87–98. doi:10.1016/j.actamat.2018.11.033.
[287] T. Li, O. Kasian, S. Cherevko, S. Zhang, S. Geiger, C. Scheu, P. Felfer, D. Raabe, B. Gault, K.J.J. Mayrhofer, Atomic-scale insights into surface species of electrocatalysts in three dimensions, Nat. Catal. 1 (2018) 300–305. doi:10.1038/s41929-018-0043-3.
[288] Y.J. Li, D. Ponge, P. Choi, D. Raabe, Atomic scale investigation of non-equilibrium segregation of boron in a quenched Mo-free martensitic steel, Ultramicroscopy. 159 (2015) 240–247. doi:10.1016/j.ultramic.2015.03.009.
[289] Y.J. Li, P. Choi, C. Borchers, S. Westerkamp, S. Goto, D. Raabe, R. Kirchheim, Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite, Acta Mater. 59 (2011) 3965–3977. doi:10.1016/j.actamat.2011.03.022.
[290] Y.J. Li, P. Choi, S. Goto, C. Borchers, D. Raabe, R. Kirchheim, Evolution of strength and microstructure during annealing of heavily cold-drawn 6.3 GPa hypereutectoid pearlitic steel wire, Acta Mater. 60 (2012) 4005–4016. doi:10.1016/j.actamat.2012.03.006.
[291] Y.J. Li, P. Choi, S. Goto, C. Borchers, D. Raabe, R. Kirchheim, Atomic scale investigation of redistribution of alloying elements in pearlitic steel wires upon cold-drawing and annealing, Ultramicroscopy. 132 (2013) 233–238. doi:10.1016/j.ultramic.2012.10.010.
[292] Y.J. Li, M. Herbig, S. Goto, D. Raabe, Formation of nanosized grain structure in martensitic 100Cr6 bearing steels upon rolling contact loading studied by atom probe tomography, Mater. Sci. Technol. (United Kingdom). 32 (2016) 1100–1105. doi:10.1080/02670836.2015.1120458.
[293] Y.J. Li, M. Herbig, S. Goto, D. Raabe, Atomic scale characterization of white etching area and its adjacent matrix in a martensitic 100Cr6 bearing steel, Mater. Charact. 123 (2017) 349–353. doi:10.1016/j.matchar.2016.12.002.
[294] Y.J. Li, D. Ponge, P. Choi, D. Raabe, Segregation of boron at prior austenite grain boundaries in a quenched martensitic steel studied by atom probe tomography, Scr. Mater. 96 (2015) 13–16. doi:10.1016/j.scriptamat.2014.09.031.
[295] Y.J.J. Li, A. Kostka, P. Choi, S. Goto, D. Ponge, R. Kirchheim, D. Raabe, Mechanisms of subgrain coarsening and its effect on the mechanical properties of carbon-supersaturated nanocrystalline hypereutectoid steel, Acta Mater. 84 (2015) 110–123. doi:10.1016/j.actamat.2014.10.027.
[296] Y. Li, D. Raabe, M. Herbig, P.P. Choi, S. Goto, A. Kostka, H. Yarita, C. Borchers, R. Kirchheim, Segregation stabilizes nanocrystalline bulk steel with near theoretical strength, Phys. Rev. Lett. 113 (2014) 1–5. doi:10.1103/PhysRevLett.113.106104.
[297] Z. Li, F. Körmann, B. Grabowski, J. Neugebauer, D. Raabe, Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity, Acta Mater. 136 (2017) 262–270. doi:10.1016/j.actamat.2017.07.023.
[298] Z. Li, A. Ludwig, A. Savan, H. Springer, D. Raabe, Combinatorial metallurgical synthesis and processing of high-entropy alloys, J. Mater. Res. 33 (2018) 3156–3169. doi:10.1557/jmr.2018.214.
[299] Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off, Nature. 534 (2016) 227–230. doi:10.1038/nature17981.
[300] Z. Li, D. Raabe, Influence of compositional inhomogeneity on mechanical behavior of an interstitial dual-phase high-entropy alloy, Mater. Chem. Phys. 210 (2018) 29–36. doi:10.1016/j.matchemphys.2017.04.050.
[301] Z. Li, D. Raabe, Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties, JOM. 69 (2017) 2099–2106. doi:10.1007/s11837-017-2540-2.
[302] Z. Li, C.C. Tasan, K.G. Pradeep, D. Raabe, A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior, Acta Mater. 131 (2017) 323–335. doi:10.1016/j.actamat.2017.03.069.
[303] Z. Li, C.C. Tasan, H. Springer, B. Gault, D. Raabe, Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys, Sci. Rep. 7 (2017) 1–7. doi:10.1038/srep40704.
[304] Y.J. Lia, P. Choi, C. Borchers, Y.Z. Chen, S. Goto, D. Raabe, R. Kirchheim, Atom probe tomography characterization of heavily cold drawn pearlitic steel wire, Ultramicroscopy. 111 (2011) 628–632. doi:10.1016/j.ultramic.2010.11.010.
[305] C.H. Liebscher, A. Stoffers, M. Alam, L. Lymperakis, O. Cojocaru-Mirédin, B. Gault, J. Neugebauer, G. Dehm, C. Scheu, D. Raabe, Strain-Induced Asymmetric Line Segregation at Faceted Si Grain Boundaries, Phys. Rev. Lett. 121 (2018) 1–5. doi:10.1103/PhysRevLett.121.015702.
[306] C.H. Liebscher, M. Yao, P. Dey, M. Lipińska-Chwalek, B. Berkels, B. Gault, T. Hickel, M. Herbig, J. Mayer, J. Neugebauer, D. Raabe, G. Dehm, C. Scheu, Tetragonal fcc-Fe induced by κ -carbide precipitates: Atomic scale insights from correlative electron microscopy, atom probe tomography, and density functional theory, Phys. Rev. Mater. 2 (2018) 1–6. doi:10.1103/PhysRevMaterials.2.023804.
[307] J.F.C. Lins, H.R.Z. Sandim, H.J. Kestenbach, D. Raabe, K.S. Vecchio, A microstructural investigation of adiabatic shear bands in an interstitial free steel, Mater. Sci. Eng. A. 457 (2007) 205–218. doi:10.1016/j.msea.2006.12.019.
[308] J.F.C. Lins, H.R.Z. Sandim, K.S. Vecchio, D. Raabe, An EBSD investigation on deformation-induced shear bands in Ti-bearing IF-steel under controlled shock-loading conditions, in: Mater. Sci. Forum, 2005: pp. 393–398. doi:10.4028/www.scientific.net/msf.495-497.393.
[309] B. Liu, P. Eisenlohr, F. Roters, D. Raabe, Simulation of dislocation penetration through a general low-angle grain boundary, Acta Mater. 60 (2012) 5380–5390. doi:10.1016/j.actamat.2012.05.002.
[310] B. Liu, D. Raabe, P. Eisenlohr, F. Roters, A. Arsenlis, G. Hommes, Dislocation interactions and low-angle grain boundary strengthening, Acta Mater. 59 (2011) 7125–7134. doi:10.1016/j.actamat.2011.07.067.
[311] B. Liu, D. Raabe, F. Roters, A. Arsenlis, Interfacial dislocation motion and interactions in single-crystal superalloys, Acta Mater. 79 (2014) 216–233. doi:10.1016/j.actamat.2014.06.048.
[312] B. Liu, D. Raabe, F. Roters, P. Eisenlohr, R.A. Lebensohn, Comparison of finite element and fast Fourier transform crystal plasticity solvers for texture prediction, Model. Simul. Mater. Sci. Eng. 18 (2010). doi:10.1088/0965-0393/18/8/085005.
[313] C. Liu, P. Shanthraj, M. Diehl, F. Roters, S. Dong, J. Dong, W. Ding, D. Raabe, An integrated crystal plasticity-phase field model for spatially resolved twin nucleation, propagation, and growth in hexagonal materials, Int. J. Plast. 106 (2018) 203–227. doi:10.1016/j.ijplas.2018.03.009.
[314] C. Liu, P. Shanthraj, J.D. Robson, M. Diehl, S. Dong, J. Dong, W. Ding, D. Raabe, On the interaction of precipitates and tensile twins in magnesium alloys, Acta Mater. 178 (2019) 146–162. doi:10.1016/j.actamat.2019.07.046.
[315] J. Liu, C. Chen, Q. Feng, X. Fang, H. Wang, F. Liu, J. Lu, D. Raabe, Dislocation activities at the martensite phase transformation interface in metastable austenitic stainless steel: An in-situ TEM study, Mater. Sci. Eng. A. 703 (2017) 236–243. doi:10.1016/j.msea.2017.06.107.
[316] T. Liu, H. Pinto, P. Brito, L.A. Sales, D. Raabe, Residual stress analysis in chemical-vapor-deposition diamond films, Appl. Phys. Lett. 94 (2009) 22–24. doi:10.1063/1.3139083.
[317] T. Liu, D. Raabe, W.M. Mao, A review of crystallographic textures in chemical vapor-deposited diamond films, Signal, Image Video Process. 4 (2010) 1–16. doi:10.1007/s11760-008-0099-7.
[318] T. Liu, D. Raabe, W. Mao, S. Zaefferer, Microtexture and grain boundaries in freestanding CVD diamond films: Growth and twinning mechanisms, Adv. Funct. Mater. 19 (2009) 3880–3891. doi:10.1002/adfm.200901231.
[319] T. Liu, D. Raabe, S. Zaefferer, A 3D tomographic EBSD analysis of a CVD diamond thin film, Sci. Technol. Adv. Mater. 9 (2008). doi:10.1088/1468-6996/9/3/035013.
[320] W.C. Liu, Z. Li, C.S. Man, D. Raabe, J.G. Morris, Effect of precipitation on rolling texture evolution in continuous cast AA 3105 aluminum alloy, Mater. Sci. Eng. A. 434 (2006) 105–113. doi:10.1016/j.msea.2006.06.102.
[321] W.C. Liu, C.S. Man, D. Raabe, Effect of strain hardening on texture development in cold rolled Al-Mg alloy, Mater. Sci. Eng. A. 527 (2010) 1249–1254. doi:10.1016/j.msea.2009.09.059.
[322] W.C. Liu, C.S. Man, D. Raabe, J.G. Morris, Effect of hot and cold deformation on the recrystallization texture of continuous cast AA 5052 aluminum alloy, Scr. Mater. 53 (2005) 1273–1277. doi:10.1016/j.scriptamat.2005.07.040.
[323] W. Lu, M. Herbig, C.H. Liebscher, L. Morsdorf, R.K.W. Marceau, G. Dehm, D. Raabe, Formation of eta carbide in ferrous martensite by room temperature aging, Acta Mater. 158 (2018) 297–312. doi:10.1016/j.actamat.2018.07.071.
[324] W. Lu, C.H. Liebscher, G. Dehm, D. Raabe, Z. Li, Bidirectional Transformation Enables Hierarchical Nanolaminate Dual-Phase High-Entropy Alloys, Adv. Mater. 30 (2018) 1–10. doi:10.1002/adma.201804727.
[325] X. Lu, X. Zhang, M. Shi, F. Roters, G. Kang, D. Raabe, Dislocation mechanism based size-dependent crystal plasticity modeling and simulation of gradient nano-grained copper, Int. J. Plast. 113 (2019) 52–73. doi:10.1016/j.ijplas.2018.09.007.
[326] A. Lübke, J. Enax, K. Loza, O. Prymak, P. Gaengler, H.O. Fabritius, D. Raabe, M. Epple, Dental lessons from past to present: Ultrastructure and composition of teeth from plesiosaurs, dinosaurs, extinct and recent sharks, RSC Adv. 5 (2015) 61612–61622. doi:10.1039/c5ra11560d.
[327] A. Lübke, J. Enax, K. Wey, H.O. Fabritius, D. Raabe, M. Epple, Composites of fluoroapatite and methylmethacrylate-based polymers (PMMA) for biomimetic tooth replacement, Bioinspiration and Biomimetics. 11 (2016) 1–8. doi:10.1088/1748-3190/11/3/035001.
[328] A. Luebke, K. Loza, R. Patnaik, J. Enax, D. Raabe, O. Prymak, H.O. Fabritius, P. Gaengler, M. Epple, Reply to the “Comments on ‘dental lessons from past to present: Ultrastructure and composition of teeth from plesiosaurs, dinosaurs, extinct and recent sharks’” by H. Botella: Et al., RSC Adv., 2016, 6, 74384-74388, RSC Adv. 7 (2017) 6215–6222. doi:10.1039/c6ra27121a.
[329] H. Luo, Z. Li, Y.H. Chen, D. Ponge, M. Rohwerder, D. Raabe, Hydrogen effects on microstructural evolution and passive film characteristics of a duplex stainless steel, Electrochem. Commun. 79 (2017) 28–32. doi:10.1016/j.elecom.2017.04.013.
[330] H. Luo, Z. Li, W. Lu, D. Ponge, D. Raabe, Hydrogen embrittlement of an interstitial equimolar high-entropy alloy, Corros. Sci. 136 (2018) 403–408. doi:10.1016/j.corsci.2018.03.040.
[331] H. Luo, Z. Li, A.M. Mingers, D. Raabe, Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution, Corros. Sci. 134 (2018) 131–139. doi:10.1016/j.corsci.2018.02.031.
[332] H. Luo, Z. Li, D. Raabe, Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy, Sci. Rep. 7 (2017) 1–7. doi:10.1038/s41598-017-10774-4.
[333] H. Luo, W. Lu, X. Fang, D. Ponge, Z. Li, D. Raabe, Beating hydrogen with its own weapon: Nano-twin gradients enhance embrittlement resistance of a high-entropy alloy, Mater. Today. 21 (2018) 1003–1009. doi:10.1016/j.mattod.2018.07.015.
[334] M.J. Lai, C.C. Tasan, J. Zhang, B. Grabowski, L.F. Huang, D. Raabe, Origin of shear induced b to x transition in Ti–Nb-based alloys, Acta Mater. 92 (2015) 55–63. https://ac.els-cdn.com/S1359645415002165/1-s2.0-S1359645415002165-main.pdf?_tid=4539944a-ddb3-11e7-a6ce-00000aab0f02&acdnat=1512914957_e79dc047cd90722ff740afce0b6594df.
[335] A. Ma, F. Roters, D. Raabe, Studying the effect of grain boundaries in dislocation density based crystal-plasticity finite element simulations, Int. J. Solids Struct. 43 (2006) 7287–7303. doi:10.1016/j.ijsolstr.2006.07.006.
[336] A. Ma, F. Roters, D. Raabe, On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite element modeling - Theory, experiments, and simulations, Acta Mater. 54 (2006) 2181–2194. doi:10.1016/j.actamat.2006.01.004.
[337] A. Ma, F. Roters, D. Raabe, A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations, Acta Mater. 54 (2006) 2169–2179. doi:10.1016/j.actamat.2006.01.005.
[338] A. Ma, F. Roters, D. Raabe, A dislocation density based constitutive law for BCC materials in crystal plasticity FEM, Comput. Mater. Sci. 39 (2007) 91–95. doi:10.1016/j.commatsci.2006.04.014.
[339] A. Ma, F. Roters, D. Raabe, Numerical study of textures and Lankford values for FCC polycrystals by use of a modified Taylor model, Comput. Mater. Sci. 29 (2004) 353–361. doi:10.1016/j.commatsci.2003.10.011.
[340] A. Ma, F. Roters, D. Raabe, A dislocation density based constitutive model for crystal plasticity FEM, in: Mater. Sci. Forum, 2005: pp. 1007–1012. doi:10.4028/www.scientific.net/msf.495-497.1007.
[341] D. Ma, M. Friák, J. Neugebauer, D. Raabe, F. Roters, Multiscale simulation of polycrystal mechanics of textured β-Ti alloys using ab initio and crystal-based finite element methods, in: Phys. Status Solidi Basic Res., 2008: pp. 2642–2648. doi:10.1002/pssb.200844227.
[342] D. Ma, P. Eisenlohr, E. Epler, C.A. Volkert, P. Shanthraj, M. Diehl, F. Roters, D. Raabe, Crystal plasticity study of monocrystalline stochastic honeycombs under in-plane compression, Acta Mater. 103 (2016) 796–808. doi:10.1016/j.actamat.2015.11.016.
[343] D. Ma, P. Eisenlohr, P. Shanthraj, M. Diehl, F. Roters, D. Raabe, Analytical bounds of in-plane Young’s modulus and full-field simulations of two-dimensional monocrystalline stochastic honeycomb structures, Comput. Mater. Sci. 109 (2015) 323–329. doi:10.1016/j.commatsci.2015.07.041.
[344] D. Ma, M. Friák, J. Von Pezold, D. Raabe, J. Neugebauer, Ab initio identified design principles of solid-solution strengthening in Al, Sci. Technol. Adv. Mater. 14 (2013) 1–5. doi:10.1088/1468-6996/14/2/025001.
[345] D. Ma, M. Friák, J. Von Pezold, J. Neugebauer, D. Raabe, Ab initio study of compositional trends in solid solution strengthening in metals with low Peierls stresses, Acta Mater. 98 (2015) 367–376. doi:10.1016/j.actamat.2015.07.054.
[346] D. Ma, M. Friák, J. Von Pezold, D. Raabe, J. Neugebauer, Computationally efficient and quantitatively accurate multiscale simulation of solid-solution strengthening by ab initio calculation, Acta Mater. 85 (2015) 53–66. doi:10.1016/j.actamat.2014.10.044.
[347] D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, D. Raabe, Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one, Acta Mater. 100 (2015) 90–97. doi:10.1016/j.actamat.2015.08.050.
[348] D. Ma, M. Yao, K.G. Pradeep, C.C. Tasan, H. Springer, D. Raabe, Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys, Acta Mater. 98 (2015) 288–296. doi:10.1016/j.actamat.2015.07.030.
[349] R. Maaß, S. Van Petegem, D. Ma, J. Zimmermann, D. Grolimund, F. Roters, H. Van Swygenhoven, D. Raabe, Smaller is stronger: The effect of strain hardening, Acta Mater. 57 (2009) 5996–6005. doi:10.1016/j.actamat.2009.08.024.
[350] B.E. MacDonald, Z. Fu, X. Wang, Z. Li, W. Chen, Y. Zhou, D. Raabe, J. Schoenung, H. Hahn, E.J. Lavernia, Influence of phase decomposition on mechanical behavior of an equiatomic CoCuFeMnNi high entropy alloy, Acta Mater. 181 (2019) 25–35. doi:10.1016/j.actamat.2019.09.030.
[351] S.K. Makineni, A.R. Kini, E.A. Jägle, H. Springer, D. Raabe, B. Gault, Synthesis and stabilization of a new phase regime in a Mo-Si-B based alloy by laser-based additive manufacturing, Acta Mater. 151 (2018) 31–40. doi:10.1016/j.actamat.2018.03.037.
[352] S.K. Makineni, M. Lenz, P. Kontis, Z. Li, A. Kumar, P.J. Felfer, S. Neumeier, M. Herbig, E. Spiecker, D. Raabe, B. Gault, Correlative Microscopy—Novel Methods and Their Applications to Explore 3D Chemistry and Structure of Nanoscale Lattice Defects: A Case Study in Superalloys, JOM. 70 (2018) 1736–1743. doi:10.1007/s11837-018-2802-7.
[353] S.K. Makineni, A. Kumar, M. Lenz, P. Kontis, T. Meiners, C. Zenk, S. Zaefferer, G. Eggeler, S. Neumeier, E. Spiecker, D. Raabe, B. Gault, On the diffusive phase transformation mechanism assisted by extended dislocations during creep of a single crystal CoNi-based superalloy, Acta Mater. 155 (2018) 362–371. doi:10.1016/j.actamat.2018.05.074.
[354] S.K. Makineni, M. Lenz, S. Neumeier, E. Spiecker, D. Raabe, B. Gault, Elemental segregation to antiphase boundaries in a crept CoNi-based single crystal superalloy, Scr. Mater. 157 (2018) 62–66. doi:10.1016/j.scriptamat.2018.07.042.
[355] S. Mandal, K.G. Pradeep, S. Zaefferer, D. Raabe, A novel approach to measure grain boundary segregation in bulk polycrystalline materials in dependence of the boundaries’ five rotational degrees of freedom, Scr. Mater. 81 (2014) 16–19. doi:10.1016/j.scriptamat.2014.02.016.
[356] S. Mandal, V. Chikkadi, B. Nienhuis, D. Raabe, P. Schall, F. Varnik, Single-particle fluctuations and directional correlations in driven hard-sphere glasses, Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 88 (2013) 1–9. doi:10.1103/PhysRevE.88.022129.
[357] S. Mandal, M. Gross, D. Raabe, F. Varnik, Heterogeneous shear in hard sphere glasses, Phys. Rev. Lett. 108 (2012) 1–5. doi:10.1103/PhysRevLett.108.098301.
[358] S. Mandal, S. Lang, M. Gross, M. Oettel, D. Raabe, T. Franosch, F. Varnik, Multiple reentrant glass transitions in confined hard-sphere glasses, Nat. Commun. 5 (2014) 1–8. doi:10.1038/ncomms5435.
[359] M. Maniruzzaman, M.A. Rahman, M.A. Gafur, H. Fabritius, D. Raabe, Modification of pineapple leaf fibers and graft copolymerization of acrylonitrile onto modified fibers, J. Compos. Mater. 46 (2012) 79–90. doi:10.1177/0021998311410486.
[360] R.K.W. Marceau, P. Choi, D. Raabe, Understanding the detection of carbon in austenitic high-Mn steel using atom probe tomography, Ultramicroscopy. 132 (2013) 239–247. doi:10.1016/j.ultramic.2013.01.010.
[361] R.K.W. Marceau, A. V. Ceguerra, A.J. Breen, M. Palm, F. Stein, S.P. Ringer, D. Raabe, Atom probe tomography investigation of heterogeneous short-range ordering in the “komplex” phase state (K-state) of Fe-18Al (at.%), Intermetallics. 64 (2015) 23–31. doi:10.1016/j.intermet.2015.04.005.
[362] R.K.W. Marceau, A. V. Ceguerra, A.J. Breen, D. Raabe, S.P. Ringer, Quantitative chemical-structure evaluation using atom probe tomography: Short-range order analysis of Fe-Al, Ultramicroscopy. 157 (2015) 12–20. doi:10.1016/j.ultramic.2015.05.001.
[363] R.K.W. Marceau, I. Gutierrez-Urrutia, M. Herbig, K.L. Moore, S. Lozano-Perez, D. Raabe, Multi-scale correlative microscopy investigation of both structure and chemistry of deformation twin bundles in Fe-Mn-C steel, Microsc. Microanal. 19 (2013) 1581–1585. doi:10.1017/S1431927613013494.
[364] E.A. Marquis, P.-P. Choi, F. Danoix, K. Kruska, S. Lozano-Perez, D. Ponge, D. Raabe, C.A. Williams, New Insights into the Atomic-Scale Structures and Behavior of Steels, Micros. Today. 20 (2012) 44–48. doi:10.1017/s1551929512000387.
[365] M. Masimov, N. Peranio, B. Springub, F. Roters, D. Raabe, EBSD study of substructure and texture formation in dual-phase steel sheets for semi-finished products, in: Solid State Phenom., 2010: pp. 251–256. doi:10.4028/www.scientific.net/SSP.160.251.
[366] N. Mattern, J.H. Han, K.G. Pradeep, K.C. Kim, E.M. Park, D.H. Kim, Y. Yokoyama, D. Raabe, J. Eckert, Structure of rapidly quenched (Cu 0.5 Zr 0.5 ) 100-x Ag x alloys (x = 0-40 at.%), J. Alloys Compd. 607 (2014) 285–290. doi:10.1016/j.jallcom.2014.04.047.
[367] N. Mattern, J.H. Han, K.G. Pradeep, K.C. Kim, E.M. Park, D.H. Kim, Y. Yokoyama, D. Raabe, J. Eckert, J Alloys and Compunds 2014 APT metallic glass Mattern Pradeep Raabe Eckert, 607 (2014) 285–290.
[368] D. Mattissen, D. Raabe, F. Heringhaus, Experimental investigation and modeling of the influence of microstructure on the resistive conductivity of a Cu-Ag-Nb in situ composite, Acta Mater. 47 (1999) 1627–1634. doi:10.1016/S1359-6454(99)00026-9.
[369] K. Matuszewski, R. Rettig, H. Matysiak, Z. Peng, I. Povstugar, P. Choi, J. Müller, D. Raabe, E. Spiecker, K.J. Kurzydłowski, R.F. Singer, Effect of ruthenium on the precipitation of topologically close packed phases in Ni-based superalloys of 3rd and 4th generation, Acta Mater. 95 (2015) 274–283. doi:10.1016/j.actamat.2015.05.033.
[370] S. Medrano, H. Zhao, F. De Geuser, B. Gault, L.T. Stephenson, A. Deschamps, D. Ponge, D. Raabe, C.W. Sinclair, Cluster hardening in Al-3Mg triggered by small Cu additions, Acta Mater. 161 (2018) 12–20. doi:10.1016/j.actamat.2018.08.050.
[371] T. Mehrtens, M. Schowalter, D. Tytko, P. Choi, D. Raabe, L. Hoffmann, H. Jönen, U. Rossow, A. Hangleiter, A. Rosenauer, Measurement of the indium concentration in high indium content InGaN layers by scanning transmission electron microscopy and atom probe tomography, Appl. Phys. Lett. 102 (2013) 100–103. doi:10.1063/1.4799382.
[372] T. Mehrtens, S. Bley, M. Schowalter, K. Sebald, M. Seyfried, J. Gutowski, S.S.A. Gerstl, P.P. Choi, D. Raabe, A. Rosenauer, A (S)TEM and atom probe tomography study of InGaN, in: J. Phys. Conf. Ser., 2011: pp. 1–5. doi:10.1088/1742-6596/326/1/012029.
[373] J.R. Mianroodi, P. Shanthraj, P. Kontis, J. Cormier, B. Gault, B. Svendsen, D. Raabe, Atomistic phase field chemomechanical modeling of dislocation-solute-precipitate interaction in Ni–Al–Co, Acta Mater. 175 (2019) 250–261. doi:10.1016/j.actamat.2019.06.008.
[374] J. Millán, D. Ponge, D. Raabe, P. Choi, O. Dmitrieva, Characterization of nano-sized precipitates in a Mn-based lean maraging steel by atom probe tomography, in: Steel Res. Int., 2011: pp. 137–145. doi:10.1002/srin.201000274.
[375] J. Millán, S. Sandlöbes, A. Al-Zubi, T. Hickel, P. Choi, J. Neugebauer, D. Ponge, D. Raabe, Designing Heusler nanoprecipitates by elastic misfit stabilization in Fe-Mn maraging steels, Acta Mater. 76 (2014) 94–105. doi:10.1016/j.actamat.2014.05.016.
[376] L. Morales-Rivas, F. Archie, S. Zaefferer, M. Benito-Alfonso, S.P. Tsai, J.R. Yang, D. Raabe, C. Garcia-Mateo, F.G. Caballero, Crystallographic examination of the interaction between texture evolution, mechanically induced martensitic transformation and twinning in nanostructured bainite, J. Alloys Compd. 752 (2018) 505–519. doi:10.1016/j.jallcom.2018.04.189.
[377] L. Morsdorf, O. Jeannin, D. Barbier, M. Mitsuhara, D. Raabe, C.C. Tasan, Multiple mechanisms of lath martensite plasticity, Acta Mater. 121 (2016) 202–214. doi:10.1016/j.actamat.2016.09.006.
[378] L. Morsdorf, K.G. Pradeep, G. Herzer, A. Kovács, R.E. Dunin-Borkowski, I. Povstugar, G. Konygin, P. Choi, D. Raabe, Phase selection and nanocrystallization in Cu-free soft magnetic FeSiNbB amorphous alloy upon rapid annealing, J. Appl. Phys. 119 (2016) 2–6. doi:10.1063/1.4944595.
[379] L. Morsdorf, C.C. Tasan, D. Ponge, D. Raabe, 3D structural and atomic-scale analysis of lath martensite: Effect of the transformation sequence, Acta Mater. 95 (2015) 366–377. doi:10.1016/j.actamat.2015.05.023.
[380] I. Mouton, A.J. Breen, S. Wang, Y. Chang, A. Szczepaniak, P. Kontis, L.T. Stephenson, D. Raabe, M. Herbig, T. Ben Britton, B. Gault, Quantification Challenges for Atom Probe Tomography of Hydrogen and Deuterium in Zircaloy-4, Microsc. Microanal. 25 (2019) 481–488. doi:10.1017/S143192761801615X.
[381] T. Nagashima, M. Koyama, A. Bashir, M. Rohwerder, C.C. Tasan, E. Akiyama, D. Raabe, K. Tsuzaki, Interfacial hydrogen localization in austenite/martensite dual-phase steel visualized through optimized silver decoration and scanning Kelvin probe force microscopy, Mater. Corros. 68 (2017) 306–310. doi:10.1002/maco.201609104.
[382] N. Nakada, R. Fukagawa, T. Tsuchiyama, S. Takaki, D. Ponge, D. Raabe, Inheritance of dislocations and crystallographic texture during martensitic reversion into austenite, ISIJ Int. 53 (2013) 1286–1288. doi:10.2355/isijinternational.53.1286.
[383] N. Nakada, T. Tsuchiyama, S. Takaki, D. Ponge, D. Raabe, Transition from diffusive to displacive austenite reversion in low-alloy steel, ISIJ Int. 53 (2013) 2275–2277. doi:10.2355/isijinternational.53.2275.
[384] J. Nellessen, S. Sandlöbes, D. Raabe, Low cycle fatigue in aluminum single and bi-crystals: On the influence of crystal orientation, Mater. Sci. Eng. A. 668 (2016) 166–179. doi:10.1016/j.msea.2016.05.054.
[385] J. Nellessen, S. Sandlöbes, D. Raabe, Effects of strain amplitude, cycle number and orientation on low cycle fatigue microstructures in austenitic stainless steel studied by electron channelling contrast imaging, Acta Mater. 87 (2015) 86–99. doi:10.1016/j.actamat.2014.12.024.
[386] G.A. Nematollahi, B. Grabowski, D. Raabe, J. Neugebauer, Multiscale description of carbon-supersaturated ferrite in severely drawn pearlitic wires, Acta Mater. 111 (2016) 321–334. doi:10.1016/j.actamat.2016.03.052.
[387] G.A. Nematollahi, J. Von Pezold, J. Neugebauer, D. Raabe, Thermodynamics of carbon solubility in ferrite and vacancy formation in cementite in strained pearlite, Acta Mater. 61 (2013) 1773–1784. doi:10.1016/j.actamat.2012.12.001.
[388] S.S. Nene, K. Liu, M. Frank, R.S. Mishra, R.E. Brennan, K.C. Cho, Z. Li, D. Raabe, Enhanced strength and ductility in a friction stir processing engineered dual phase high entropy alloy, Sci. Rep. 7 (2017) 1–7. doi:10.1038/s41598-017-16509-9.
[389] T. Niendorf, T. Wegener, Z. Li, D. Raabe, Unexpected cyclic stress-strain response of dual-phase high-entropy alloys induced by partial reversibility of deformation, Scr. Mater. 143 (2018) 63–67. doi:10.1016/j.scriptamat.2017.09.013.
[390] S. Nikolov, H. Fabritius, M. Petrov, M. Friák, L. Lymperakis, C. Sachs, D. Raabe, J. Neugebauer, Robustness and optimal use of design principles of arthropod exoskeletons studied by ab initio-based multiscale simulations, J. Mech. Behav. Biomed. Mater. 4 (2011) 129–145. doi:10.1016/j.jmbbm.2010.09.015.
[391] S. Nikolov, R.A. Lebensohn, D. Raabe, Self-consistent modeling of large plastic deformation, texture and morphology evolution in semi-crystalline polymers, J. Mech. Phys. Solids. 54 (2006) 1350–1375. doi:10.1016/j.jmps.2006.01.008.
[392] S. Nikolov, M. Petrov, L. Lymperakis, M. Friák, C. Sachs, H.O. Fabritius, D. Raabe, J. Neugebauer, Revealing the design principles of high-performance biological composites using Ab initio and multiscale simulations: The example of lobster cuticle, Adv. Mater. 22 (2010) 519–526. doi:10.1002/adma.200902019.
[393] S. Nikolov, D. Raabe, Hierarchical modeling of the elastic properties of bone at submicron scales: The role of extrafibrillar mineralization, Biophys. J. 94 (2008) 4220–4232. doi:10.1529/biophysj.107.125567.
[394] H.S. Oh, S.J. Kim, K. Odbadrakh, W.H. Ryu, K.N. Yoon, S. Mu, F. Körmann, Y. Ikeda, C.C. Tasan, D. Raabe, T. Egami, E.S. Park, Engineering atomic-level complexity in high-entropy and complex concentrated alloys, Nat. Commun. 10 (2019). doi:10.1038/s41467-019-10012-7.
[395] H.S. Oh, D. Ma, G.P. Leyson, B. Grabowski, E.S. Park, F. Kormann, D. Raabe, Lattice distortions in the FeCoNiCrMn high entropy alloy studied by theory and experiment, Entropy. 18 (2016) 1–9. doi:10.3390/e18090321.
[396] F. Otto, A. Dlouhý, K.G.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, E.P.P. George, Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures, Acta Mater. 112 (2016) 40–52. doi:10.1016/j.actamat.2016.04.005.
[397] D. Palanisamy, D. Raabe, B. Gault, Elemental segregation to twin boundaries in a MnAl ferromagnetic Heusler alloy, Scr. Mater. 155 (2018) 144–148. doi:10.1016/j.scriptamat.2018.06.037.
[398] D. Palanisamy, D. Raabe, B. Gault, On the compositional partitioning during phase transformation in a binary ferromagnetic MnAl alloy, Acta Mater. 174 (2019) 227–236. doi:10.1016/j.actamat.2019.05.037.
[399] P. Pandey, S.K. Makineni, A. Samanta, A. Sharma, S.M. Das, B. Nithin, C. Srivastava, A.K. Singh, D. Raabe, B. Gault, K. Chattopadhyay, Elemental site occupancy in the L12 A3B ordered intermetallic phase in Co-based superalloys and its influence on the microstructure, Acta Mater. 163 (2019) 140–153. doi:10.1016/j.actamat.2018.09.049.
[400] S.J. Park, H.N. Han, K.H. Oh, D. Raabe, J.K. Kim, Finite element simulation of grain interaction and orientation fragmentation during plastic deformation of BCC metals, in: Mater. Sci. Forum, 2002: pp. 371–376. doi:10.4028/www.scientific.net/msf.408-412.371.
[401] Y.B. Park, D. Raabe, T.H. Yim, Cold rolling textures of Fe-Ni soft magnetic alloys, Scr. Mater. 35 (1996) 1277–1283. doi:10.1016/1359-6462(96)00308-9.
[402] A.B. Parsa, P. Wollgramm, H. Buck, C. Somsen, A. Kostka, I. Povstugar, P.P. Choi, D. Raabe, A. Dlouhy, J. Müller, E. Spiecker, K. Demtroder, J. Schreuer, K. Neuking, G. Eggeler, Advanced scale bridging microstructure analysis of single crystal Ni-base superalloys, Adv. Eng. Mater. 17 (2015) 216–230. doi:10.1002/adem.201400136.
[403] O. Pavlic, W. Ibarra-Hernandez, I. Valencia-Jaime, S. Singh, G. Avendaño-Franco, D. Raabe, A.H. Romero, Design of Mg alloys: The effects of Li concentration on the structure and elastic properties in the Mg-Li binary system by first principles calculations, J. Alloys Compd. 691 (2017) 15–25. doi:10.1016/j.jallcom.2016.08.217.
[404] Z. Pei, L.F. Zhu, M. Friák, S. Sandlöbes, J. Von Pezold, H.W. Sheng, C.P. Race, S. Zaefferer, B. Svendsen, D. Raabe, J. Neugebauer, Ab initio and atomistic study of generalized stacking fault energies in Mg and Mg-Y alloys, New J. Phys. 15 (2013) 1–19. doi:10.1088/1367-2630/15/4/043020.
[405] Z. Pei, M. Friák, S. Sandlöbes, R. Nazarov, B. Svendsen, D. Raabe, J. Neugebauer, Rapid theory-guided prototyping of ductile Mg alloys: From binary to multi-component materials, New J. Phys. 17 (2015) 93009. doi:10.1088/1367-2630/17/9/093009.
[406] Z. Peng, P.P. Choi, B. Gault, D. Raabe, Evaluation of Analysis Conditions for Laser-Pulsed Atom Probe Tomography: Example of Cemented Tungsten Carbide, in: Microsc. Microanal., 2017: pp. 431–442. doi:10.1017/S1431927616012654.
[407] Z. Peng, B. Gault, D. Raabe, M.W. Ashton, S.B. Sinnott, P.-P. Choi, Y. Li, On the Multiple Event Detection in Atom Probe Tomography, Microsc. Microanal. 23 (2017) 618–619. doi:10.1017/s1431927617003762.
[408] Z. Peng, Y. Lu, C. Hatzoglou, A. Kwiatkowski Da Silva, F. Vurpillot, D. Ponge, D. Raabe, B. Gault, An Automated Computational Approach for Complete In-Plane Compositional Interface Analysis by Atom Probe Tomography, Microsc. Microanal. 25 (2019) 389–400. doi:10.1017/S1431927618016112.
[409] Z. Peng, I. Povstugar, K. Matuszewski, R. Rettig, R. Singer, A. Kostka, P.P. Choi, D. Raabe, Effects of Ru on elemental partitioning and precipitation of topologically close-packed phases in Ni-based superalloys, Scr. Mater. 101 (2015) 44–47. doi:10.1016/j.scriptamat.2015.01.014.
[410] Z. Peng, M. Rohwerder, P.P. Choi, B. Gault, T. Meiners, M. Friedrichs, H. Kreilkamp, F. Klocke, D. Raabe, Atomic diffusion induced degradation in bimetallic layer coated cemented tungsten carbide, Corros. Sci. 120 (2017) 1–13. doi:10.1016/j.corsci.2017.01.007.
[411] Z. Peng, F. Vurpillot, P.P. Choi, Y. Li, D. Raabe, B. Gault, On the detection of multiple events in atom probe tomography, Ultramicroscopy. 189 (2018) 54–60. doi:10.1016/j.ultramic.2018.03.018.
[412] N. Peranio, Y.J. Li, F. Roters, D. Raabe, Microstructure and texture evolution in dual-phase steels: Competition between recovery, recrystallization, and phase transformation, Mater. Sci. Eng. A. 527 (2010) 4161–4168. doi:10.1016/j.msea.2010.03.028.
[413] N. Peranio, F. Roters, D. Raabe, Microstructure evolution during recrystallization in dual-phase steels, in: Mater. Sci. Forum, 2012: pp. 13–22. doi:10.4028/www.scientific.net/MSF.715-716.13.
[414] D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, C. Oskay, J.E. Wittig, The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe-Mn-(Al-Si) steels investigated by experiment and theory, Acta Mater. 68 (2014) 238–253. doi:10.1016/j.actamat.2014.01.001.
[415] D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, J.E. Wittig, The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe-Mn-Al-Si steels during tensile deformation, Acta Mater. 100 (2015) 178–190. doi:10.1016/j.actamat.2015.08.030.
[416] E. Plancher, C.C. Tasan, S. Sandloebes, D. Raabe, On dislocation involvement in Ti-Nb gum metal plasticity, Scr. Mater. 68 (2013) 805–808. doi:10.1016/j.scriptamat.2013.01.034.
[417] E. Plancher, C.C. Tasan, S. Sandloebes, D. Raabe, On dislocation involvement in Ti – Nb gum metal plasticity Author ’ s personal copy, Scr. Mater. 68 (2013) 805–808.
[418] I. Povstugar, C.H. Zenk, R. Li, P.-P.P. Choi, S. Neumeier, O. Dolotko, M. Hoelzel, M. Göken, D. Raabe, Elemental partitioning, lattice misfit and creep behaviour of Cr containing gammaprime strengthened Co base superalloys, Mater. Sci. Technol. (United Kingdom). 32 (2016) 220–225. doi:10.1179/1743284715Y.0000000112.
[419] I. Povstugar, P.P. Choi, S. Neumeier, A. Bauer, C.H. Zenk, M. Göken, D. Raabe, Elemental partitioning and mechanical properties of Ti- and Ta-containing Co-Al-W-base superalloys studied by atom probe tomography and nanoindentation, Acta Mater. 78 (2014) 78–85. doi:10.1016/j.actamat.2014.06.020.
[420] I. Povstugar, P.-P.P. Choi, D. Tytko, J.-P.P. Ahn, D. Raabe, Interface-directed spinodal decomposition in TiAlN/CrN multilayer hard coatings studied by atom probe tomography, Acta Mater. 61 (2013) 7534–7542. doi:10.1016/j.actamat.2013.08.028.
[421] K.G. Pradeep, G. Herzer, P. Choi, D. Raabe, Atom probe tomography study of ultrahigh nanocrystallization rates in FeSiNbBCu soft magnetic amorphous alloys on rapid annealing, Acta Mater. 68 (2014) 295–309. doi:10.1016/j.actamat.2014.01.031.
[422] K.G. Pradeep, G. Herzer, D. Raabe, Atomic scale study of CU clustering and pseudo-homogeneous Fe-Si nanocrystallization in soft magnetic FeSiNbB(CU) alloys, Ultramicroscopy. 159 (2015) 285–291. doi:10.1016/j.ultramic.2015.04.006.
[423] K.G. Pradeep, C.C. Tasan, M.J. Yao, Y. Deng, H. Springer, D. Raabe, Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design, Mater. Sci. Eng. A. 648 (2015) 183–192. doi:10.1016/j.msea.2015.09.010.
[424] K.G. Pradeep, N. Wanderka, P. Choi, J. Banhart, B.S. Murty, D. Raabe, Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography, Acta Mater. 61 (2013) 4696–4706. doi:10.1016/j.actamat.2013.04.059.
[425] A. Prakash, J. Guénolé, J. Wang, J. Müller, E. Spiecker, M.J. Mills, I. Povstugar, P. Choi, D. Raabe, E. Bitzek, Atom probe informed simulations of dislocation-precipitate interactions reveal the importance of local interface curvature, Acta Mater. 92 (2015) 33–45. doi:10.1016/j.actamat.2015.03.050.
[426] M. Pristovsek, Y. Han, T. Zhu, F. Oehler, F. Tang, R.A. Oliver, C.J. Humphreys, D. Tytko, P.P. Choi, D. Raabe, F. Brunner, M. Weyers, Structural and optical properties of (1122) InGaN quantum wells compared to (0001) and (1120), Semicond. Sci. Technol. 31 (2016) 1–8. doi:10.1088/0268-1242/31/8/085007.
[427] D. Raabe, Overview of the lattice Boltzmann method for nano- And microscale fluid dynamics in materials science and engineering, Model. Simul. Mater. Sci. Eng. 12 (2004) R13–R46. doi:10.1088/0965-0393/12/6/R01.
[428] D. Raabe, Simulation of the resistivity of heavily cold worked Cu-20 wt.%Nb wires, Comput. Mater. Sci. 3 (1995) 402–412. doi:10.1016/0927-0256(94)00079-R.
[429] D. Raabe, On the contribution of screw dislocations to internal stress fields associated with dislocation cell structures, Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop. 73 (1996) 1363–1383. doi:10.1080/01418619608245139.
[430] D. Raabe, Investigation of contribution of {123} slip planes to development of rolling textures in bee metals by use of Taylor models, Mater. Sci. Technol. (United Kingdom). 11 (1995) 455–460. doi:10.1179/mst.1995.11.5.455.
[431] D. Raabe, Mesoscale simulation of spherulite growth during polymer crystallization by use of a cellular automaton, Acta Mater. 52 (2004) 2653–2664. doi:10.1016/j.actamat.2004.02.013.
[432] D. Raabe, Don’t trust your simulation - Computational materials science on its way to maturity?, Adv. Eng. Mater. 4 (2002) 255–267. doi:10.1002/1527-2648(20020503)4:5<255::AID-ADEM255>3.0.CO;2-R.
[433] D. Raabe, Texture simulation for hot rolling of aluminium by use of a Taylor model considering grain interactions, Acta Metall. Mater. 43 (1995) 1023–1028. doi:10.1016/0956-7151(94)00302-X.
[434] D. Raabe, Investigation of the iterative series expansion method by means of standard functions, Mater. Lett. 22 (1995) 313–318. doi:10.1016/0167-577X(94)00252-5.
[435] D. Raabe, Scaling Monte Carlo kinetics of the potts model using rate theory, Acta Mater. 48 (2000) 1617–1628. doi:10.1016/S1359-6454(99)00451-6.
[436] D. Raabe, Taylor simulation and experimental investigation of rolling textures of polycrystalline iron aluminides with special regard to slip on {112} planes, Acta Mater. 44 (1996) 937–951. doi:10.1016/1359-6454(95)00243-X.
[437] D. Raabe, Multiscale recrystallization models for the prediction of crystallographic textures with respect to process simulation, J. Strain Anal. Eng. Des. 42 (2007) 253–268. doi:10.1243/03093247JSA219.
[438] D. Raabe, Texture and microstructure evolution during cold rolling of a strip cast and of a hot rolled austenitic stainless steel, Acta Mater. 45 (1997) 1137–1151. doi:10.1016/S1359-6454(96)00222-4.
[439] D. Raabe, Simulation of rolling textures of b.c.c. metals considering grain interactions and crystallographic slip on {110}, {112} and {123} planes, Mater. Sci. Eng. A. 197 (1995) 31–37. doi:10.1016/0921-5093(94)09770-4.
[440] D. Raabe, On the consideration of climb in discrete dislocation dynamics, Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop. 77 (1998) 751–759. doi:10.1080/01418619808224081.
[441] D. Raabe, Challenges in computational materials science, Adv. Mater. 14 (2002) 639–650. doi:10.1002/1521-4095(20020503)14:9<639::AID-ADMA639>3.0.CO;2-7.
[442] D. Raabe, Microstructure and crystallographic texture of strip-cast and hot-rolled austenitic stainless steel, Metall. Mater. Trans. A. 26 (1995) 991–998. doi:10.1007/BF02649096.
[443] D. Raabe, On the influence of the chromium content on the evolution of rolling textures in ferritic stainless steels, J. Mater. Sci. 31 (1996) 3839–3845. doi:10.1007/BF00352800.
[444] D. Raabe, Inhomogeneity of the crystallographic texture in a hot-rolled austenitic stainless steel, J. Mater. Sci. 30 (1995) 47–52. doi:10.1007/BF00352130.
[445] D. Raabe, Contribution of {123} 〈111〉 slip systems to deformation of b.c.c. metals, Phys. Status Solidi. 149 (1995) 575–581. doi:10.1002/pssa.2211490208.
[446] D. Raabe, Textures of strip cast and hot rolled ferritic and austenitic stainless steel, Mater. Sci. Technol. (United Kingdom). 11 (1995) 461–468. doi:10.1179/mst.1995.11.5.461.
[447] D. Raabe, Yield surface simulation for partially recrystallized aluminum polycrystals on the basis of spatially discrete data, Comput. Mater. Sci. 19 (2000) 13–26. doi:10.1016/s0927-0256(00)00135-x.
[448] D. Raabe, A. Al-Sawalmih, S.B. Yi, H. Fabritius, Preferred crystallographic texture of α-chitin as a microscopic and macroscopic design principle of the exoskeleton of the lobster Homarus americanus, Acta Biomater. 3 (2007) 882–895. doi:10.1016/j.actbio.2007.04.006.
[449] D. Raabe, N. Chen, L. Chen, Crystallographic texture, amorphization, and recrystallization in rolled and heat treated polyethylene terephthalate (PET), Polymer (Guildf). 45 (2004) 8265–8277. doi:10.1016/j.polymer.2004.09.045.
[450] D. Raabe, R. Degenhardt, R. Seliger, W. Klos, M. Sachtleber, L. Ernenputsch, Advances in the Optimization of Thin Strip Cast Austenitic 304 Stainless Steel, Steel Res. Int. 79 (2008) 440–444. doi:10.1002/srin.200806150.
[451] D. Raabe, J. Ge, Experimental study on the thermal stability of Cr filaments in a Cu-Cr-Ag in situ composite, Scr. Mater. 51 (2004) 915–920. doi:10.1016/j.scriptamat.2004.06.016.
[452] D. Raabe, A. Godara, Mesoscale simulation of the kinetics and topology of spherulite growth during crystallization of isotactic polypropylene (iPP) by using a cellular automaton, Model. Simul. Mater. Sci. Eng. 13 (2005) 733–751. doi:10.1088/0965-0393/13/5/007.
[453] D. Raabe, U. Hangen, Investigation of structurally less-ordered areas in the Nb filaments of a heavily cold-rolled Cu-20 wt. % Nb in situ composite, J. Mater. Res. 10 (1995) 3050–3061. doi:10.1557/JMR.1995.3050.
[454] D. Raabe, U. Hangen, Observation of amorphous areas in a heavily cold rolled Cu-20 wt% Nb composite, Mater. Lett. 22 (1995) 155–161. doi:10.1016/0167-577X(94)00248-7.
[455] D. Raabe, U. Hangen, Simulation of the yield strength of wire drawn Cu-based in-situ composites, Comput. Mater. Sci. 5 (1996) 195–202. doi:10.1016/0927-0256(95)00072-0.
[456] D. Raabe, U. Hangen, Correlation of microstructure and type II superconductivity of a heavily cold rolled Cu-20mass% Nb in situ composite, Acta Mater. 44 (1996) 953–961. doi:10.1016/1359-6454(95)00239-1.
[457] D. Raabe, U. Hangen, On the anisotropy of the superconducting properties of a heavily cold rolled cu-20 mass% Nb in situ composite, Phys. Status Solidi Appl. Res. 154 (1996) 715–726. doi:10.1002/pssa.2211540224.
[458] D. Raabe, M. Herbig, S. Sandlöbes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, P.P. Choi, Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces, Curr. Opin. Solid State Mater. Sci. 18 (2014) 253–261. doi:10.1016/j.cossms.2014.06.002.
[459] D. Raabe, F. Heringhaus, Correlation of superconductivity and microstructure in an in‐situ formed Cu–20%Nb composite, Phys. Status Solidi. 142 (1994) 473–481. doi:10.1002/pssa.2211420221.
[460] D. Raabe, J. Keichel, Development of the microstructure and crystallographic texture during annealing of a rolled polycrystalline Fe3Al alloy, Mater. Sci. Eng. A. 203 (1995) 208–216. doi:10.1016/0921-5093(95)09872-0.
[461] D. Raabe, J. Keichel, G. Gottstein, Investigation of crystallographic slip in polycrystalline Fe3Al using slip trace measurement and microtexture determination, Acta Mater. 45 (1997) 2839–2849. doi:10.1016/S1359-6454(96)00373-4.
[462] D. Raabe, J. Keichel, Z. Sun, Microstructure and crystallographic texture of rolled polycrystalline Fe3Al, J. Mater. Sci. 31 (1996) 339–344. doi:10.1007/BF01139149.
[463] D. Raabe, P. Klose, B. Engl, K.P. Imlau, F. Friedel, F. Roters, Concepts for integrating plastic anisotropy into metal forming simulations, Adv. Eng. Mater. 4 (2002) 169–180. doi:10.1002/1527-2648(200204)4:4<169::AID-ADEM169>3.0.CO;2-G.
[464] D. Raabe, T. Liu, Influence of nitrogen doping on growth rate and texture evolution of chemical vapor deposition diamond films, Appl. Phys. Lett. 94 (2009) 021119. doi:10.1063/1.3072601.
[465] D. Raabe, K. Lücke, Texture and microstructure of hot rolled steel, Scr. Metall. Mater. 26 (1992) 1221–1226. doi:10.1016/0956-716X(92)90567-X.
[466] D. Raabe, K. Lücke, Selective particle drag during primary recrystallization of Fe-Cr alloys, Scr. Metall. Mater. 26 (1992) 19–24. doi:10.1016/0956-716X(92)90361-H.
[467] D. Raabe, K. Lücke, Investigation of the ADC Method for Direct ODF Approximation by Means of Standard Functions, Phys. Status Solidi. 180 (1993) 59–65. doi:10.1002/pssb.2221800103.
[468] D. Raabe, K. Lüucke, Textures of ferritic stainless steels, Mater. Sci. Technol. (United Kingdom). 9 (1993) 302–312. doi:10.1179/mst.1993.9.4.302.
[469] D. Raabe, D. Ma, F. Roters, Effects of initial orientation, sample geometry and friction on anisotropy and crystallographic orientation changes in single crystal microcompression deformation: A crystal plasticity finite element study, Acta Mater. 55 (2007) 4567–4583. doi:10.1016/j.actamat.2007.04.023.
[470] D. Raabe, W. Mao, Experimental investigation and simulation of the texture evolution during rolling deformation of an intermetallic Fe-28 at.% A1-2 at.% Cr polycrystal at elevated temperatures, Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop. 71 (1995) 805–813. doi:10.1080/01418619508236221.
[471] D. Raabe, D. Mattissen, Microstructure and mechanical properties of a cast and wire-drawn ternary Cu-Ag-Nb in situ composite, Acta Mater. 46 (1998) 5973–5984. doi:10.1016/S1359-6454(98)00218-3.
[472] D. Raabe, D. Mattissen, Experimental investigation and ginzburg-landau modeling of the microstructure dependence of superconductivity in Cu-Ag-Nb wires, Acta Mater. 47 (1999) 769–777. doi:10.1016/S1359-6454(98)00406-6.
[473] D. Raabe, K. Miyake, H. Takahara, Processing, microstructure, and properties of ternary high-strength Cu-Cr-Ag in situ composites, Mater. Sci. Eng. A. 291 (2000) 186–197. doi:10.1016/S0921-5093(00)00981-3.
[474] D. Raabe, S. Ohsaki, K. Hono, Mechanical alloying and amorphization in Cu-Nb-Ag in situ composite wires studied by transmission electron microscopy and atom probe tomography, Acta Mater. 57 (2009) 5254–5263. doi:10.1016/j.actamat.2009.07.028.
[475] D. Raabe, D. Ponge, O. Dmitrieva, B. Sander, Nanoprecipitate-hardened 1.5 GPa steels with unexpected high ductility, Scr. Mater. 60 (2009) 1141–1144. doi:10.1016/j.scriptamat.2009.02.062.
[476] D. Raabe, D. Ponge, M.M. Wang, M. Herbig, M. Belde, H. Springer, 1 billion tons of nanostructure - Segregation engineering enables confined transformation effects at lattice defects in steels, in: IOP Conf. Ser. Mater. Sci. Eng., 2017. doi:10.1088/1757-899X/219/1/012006.
[477] D. Raabe, F. Reher, M. Hölscher, K. Lücke, Textures of strip cast Fe16%Cr, Scr. Metall. Mater. 29 (1993) 113–116. doi:10.1016/0956-716X(93)90264-S.
[478] D. Raabe, P. Romano, C. Sachs, A. Al-Sawalmih, H.G. Brokmeier, S.B. Yi, G. Servos, H.G. Hartwig, Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue, J. Cryst. Growth. 283 (2005) 1–7. doi:10.1016/j.jcrysgro.2005.05.077.
[479] D. Raabe, P. Romano, C. Sachs, H. Fabritius, A. Al-Sawalmih, S.B. Yi, G. Servos, H.G. Hartwig, Microstructure and crystallographic texture of the chitin-protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus, Mater. Sci. Eng. A. 421 (2006) 143–153. doi:10.1016/j.msea.2005.09.115.
[480] D. Raabe, C. Sachs, P. Romano, The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material, Acta Mater. 53 (2005) 4281–4292. doi:10.1016/j.actamat.2005.05.027.
[481] D. Raabe, B. Sander, M. Friák, D. Ma, J. Neugebauer, Theory-guided bottom-up design of β-titanium alloys as biomaterials based on first principles calculations: Theory and experiments, Acta Mater. 55 (2007) 4475–4487. doi:10.1016/j.actamat.2007.04.024.
[482] D. Raabe, S. Sandlöbes, J. Millán, D. Ponge, H. Assadi, M. Herbig, P.P. Choi, Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: A pathway to ductile martensite, Acta Mater. 61 (2013) 6132–6152. doi:10.1016/j.actamat.2013.06.055.
[483] D. Raabe, G. Schlenkert, H. Weisshaupt, K. Lücke, Texture and microstructure of rolled and annealed tantalum, Mater. Sci. Technol. (United Kingdom). 10 (1994) 299–305. doi:10.1179/mst.1994.10.4.299.
[484] D. Raabe, H. Springer, I. Gutierrez-Urrutia, F. Roters, M. Bausch, J.B. Seol, M. Koyama, P.P. Choi, K. Tsuzaki, Alloy Design, Combinatorial Synthesis, and Microstructure–Property Relations for Low-Density Fe-Mn-Al-C Austenitic Steels, JOM. 66 (2014) 1845–1856. doi:10.1007/s11837-014-1032-x.
[485] D. Raabe, Y. Wang, F. Roters, Crystal plasticity simulation study on the influence of texture on earing in steel, in: Comput. Mater. Sci., 2005: pp. 221–234. doi:10.1016/j.commatsci.2004.12.072.
[486] D. Raabe, Z. Zhao, W. Mao, On the dependence of in-grain subdivision and deformation texture of aluminum on grain interaction, Acta Mater. 50 (2002) 4379–4394. doi:10.1016/S1359-6454(02)00276-8.
[487] D. Raabe, Z. Zhao, S.J. Park, F. Roters, Theory of orientation gradients in plastically strained crystals, Acta Mater. 50 (2002) 421–440. doi:10.1016/S1359-6454(01)00323-8.
[488] D. Raabe, Z. Zhao, F. Roters, Study on the orientational stability of cube-oriented FCC crystals under plane strain by use of a texture component crystal plasticity finite element method, Scr. Mater. 50 (2004) 1085–1090. doi:10.1016/j.scriptamat.2003.11.061.
[489] D. Raabe, Cellular automata in materials science with particular reference to recrystallization simulation, Annu. Rev. Mater. Sci. 32 (2002) 53–76. doi:10.1146/annurev.matsci.32.090601.152855.
[490] D. Raabe, Overview on Basic Types of Hot Rolling Textures of Steels, Steel Res. Int. 74 (2003) 327–337. doi:10.1002/srin.200300194.
[491] D. Raabe, Recovery and Recrystallization: Phenomena, Physics, Models, Simulation, in: Phys. Metall. Fifth Ed., 2014: pp. 2291–2397. doi:10.1016/B978-0-444-53770-6.00023-X.
[492] D. Raabe, A texture-component Avrami model for predicting recrystallization textures, kinetics and grain size, Model. Simul. Mater. Sci. Eng. 15 (2007) 39–63. doi:10.1088/0965-0393/15/2/004.
[493] D. Raabe, Mesoscale simulation of recrystallization textures and microstructures, Adv. Eng. Mater. 3 (2001) 745–752. doi:10.1002/1527-2648(200110)3:10<745::AID-ADEM745>3.0.CO;2-C.
[494] D. Raabe, Recrystallization Simulation by Use of Cellular Automata, in: Handb. Mater. Model., 2005: pp. 2173–2203. doi:10.1007/978-1-4020-3286-8_113.
[495] D. Raabe, Computational Materials Science, Wiley-VCH Verlag GmbH & Co. KGaA, 1998. doi:10.1002/3527601945.
[496] D. Raabe, A. Al-Sawalmih, P. Romano, C. Sachs, H.G. Brokmeier, S.B. Yi, G. Servos, H.G. Hartwig, Structure and crystallographic texture of arthropod bio-composites, in: Mater. Sci. Forum, 2005: pp. 1665–1674. doi:10.4028/www.scientific.net/msf.495-497.1665.
[497] D. Raabe, R.C. Becker, Coupling of a crystal plasticity finite-element model with a probabilistic cellular automaton for simulating primary static recrystallization in aluminum, Model. Simul. Mater. Sci. Eng. 8 (2000) 445–462. doi:10.1088/0965-0393/8/4/304.
[498] D. Raabe, P.P. Choi, Y. Li, A. Kostka, X. Sauvage, F. Lecouturier, K. Hono, R. Kirchheim, R. Pippan, D. Embury, Metallic composites processed via extreme deformation: Toward the limits of strength in bulk materials, MRS Bull. 35 (2010) 982–991. doi:10.1557/mrs2010.703.
[499] D. Raabe, P. Choi, Y. Li, A. Kostka, X. Sauvage, F. Lecouturier, K. Hono, R. Kirchheim, R. Pippan, D. Embury, MRS_Bulletin-2010 Raabe Metals at extremes mechanical alloying, 35 (2010) 982–991.
[500] D. Raabe, U. Hangen, Introduction of a modified linear rule of mixtures for the modelling of the yield strength of heavily wire drawn in situ composites, Compos. Sci. Technol. 55 (1995) 57–61. doi:10.1016/0266-3538(95)00094-1.
[501] D. Raabe, L. Hantcherli, 2D cellular automaton simulation of the recrystallization texture of an if sheet steel under consideration of Zener pinning, Comput. Mater. Sci. 34 (2005) 299–313. doi:10.1016/j.commatsci.2004.12.067.
[502] D. Raabe, K. Helming, F. Roters, Z. Zhao, J. Hirsch, A texture component crystal plasticity finite element method for scalable large strain anisotropy simulations, in: Mater. Sci. Forum, 2002: pp. 257–262. doi:10.4028/www.scientific.net/msf.396-402.31.
[503] D. Raabe, D. Hessling, Synthesis of hollow metallic particles via ultrasonic treatment of a metal emulsion, Scr. Mater. 62 (2010) 690–692. doi:10.1016/j.scriptamat.2010.01.028.
[504] D. Raabe, Z. Li, D. Ponge, Metastability alloy design, MRS Bull. 44 (2019) 266–272. doi:10.1557/mrs.2019.72.
[505] D. Raabe, Z. Li, D. Ponge, Metastability alloy design, MRS Bull. 44 (2019) 266–272. doi:10.1557/mrs.2019.72.
[506] D. Raabe, K. Lucke, Rolling textures of niobium and molybdenum, Zeitschrift Fuer Met. Res. Adv. Tech. 85 (1994) 302–306. http://cat.inist.fr/?aModele=afficheN&amp;cpsidt=4188559.
[507] D. Raabe, K. Luecke, Rolling and annealing textures of bcc metals, Mater. Sci. Forum. 157–6 (1994) 597–610. doi:10.4028/www.scientific.net/msf.157-162.597.
[508] D. Raabe, D. Ponge, O. Dmitrieva, B. Sander, Designing ultrahigh strength steels with good ductility by combining transformation induced plasticity and martensite aging, Adv. Eng. Mater. 11 (2009) 547–555. doi:10.1002/adem.200900061.
[509] D. Raabe, D. Ponge, R. Kirchheim, H. Assadi, Y. Li, S. Goto, A. Kostka, M. Herbig, S. Sandl, M. Kuzmina, J. Millán, L. Yuan, P.P. Choi, Interface Segregation in Advanced Steels Studied at the Atomic Scale, in: Microstruct. Des. Adv. Eng. Mater., 2013: pp. 267–298. doi:10.1002/9783527652815.ch11.
[510] D. Raabe, F. Roters, Using texture components in crystal plasticity finite element simulations, Int. J. Plast. 20 (2004) 339–361. doi:10.1016/S0749-6419(03)00092-5.
[511] D. Raabe, F. Roters, J. Neugebauer, I. Gutierrez-Urrutia, T. Hickel, W. Bleck, J.M. Schneider, J.E. Wittig, J. Mayer, Ab initio-guided design of twinning-induced plasticity steels, MRS Bull. 41 (2016) 320–325. doi:10.1557/mrs.2016.63.
[512] D. Raabe, F. Roters, J. Neugebauer, I. Gutierrez-Urrutia, T. Hickel, W. Bleck, J.M. Schneider, J.E. Wittig, J. Mayer, Ab initio-guided design of twinning-induced plasticity steels, MRS Bull. 41 (2016) 320–325. doi:10.1557/mrs.2016.63.
[513] D. Raabe, F. Roters, Y. Wang, Simulation of earing during deep drawing of bcc steel by use of a texture component crystal plasticity finite element method, in: Mater. Sci. Forum, 2005: pp. 1529–1534. doi:10.4028/www.scientific.net/msf.495-497.1529.
[514] D. Raabe, M. Sachtleber, L.F. Vega, H. Weiland, Surface micromechanics of polymer coated aluminium sheets during plastic deformation, Adv. Eng. Mater. 4 (2002) 859–863. doi:10.1002/1527-2648(20021105)4:11<859::AID-ADEM859>3.0.CO;2-0.
[515] D. Raabe, M. Sachtleber, H. Weiland, G. Scheele, Z. Zhao, Grain-scale micromechanics of polycrystal surfaces during plastic straining, Acta Mater. 51 (2003) 1539–1560. doi:10.1016/S1359-6454(02)00557-8.
[516] D. Raabe, C.C. Tasan, H. Springer, M. Bausch, From high-entropy alloys to high-entropy steels, Steel Res. Int. 86 (2015) 1127–1138. doi:10.1002/srin.201500133.
[517] D. Raabe, Introduction of a scalable three-dimensional cellular automaton with a probabilistic switching rule for the discrete mesoscale simulation of recrystallization phenomena, Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop. 79 (1999) 2339–2358. doi:10.1080/01418619908214288.
[518] F. Ram, Z. Li, S. Zaefferer, S.M. Hafez Haghighat, Z. Zhu, D. Raabe, R.C. Reed, On the origin of creep dislocations in a Ni-base, single-crystal superalloy: An ECCI, EBSD, and dislocation dynamics-based study, Acta Mater. 109 (2016) 151–161. doi:10.1016/j.actamat.2016.02.038.
[519] Z. Rao, D. Ponge, F. Körmann, Y. Ikeda, O. Schneeweiss, M. Friák, J. Neugebauer, D. Raabe, Z. Li, Invar effects in FeNiCo medium entropy alloys: From an Invar treasure map to alloy design, Intermetallics. 111 (2019) 106520. doi:10.1016/j.intermet.2019.106520.
[520] L. Raue, H. Klein, D. Raabe, The exoskeleton of the American lobster- From texture to anisotropic properties, in: Solid State Phenom., 2010: pp. 287–294. doi:10.4028/www.scientific.net/SSP.160.287.
[521] B. Ravi Kumar, D. Raabe, Tensile deformation characteristics of bulk ultrafine-grained austenitic stainless steel produced by thermal cycling, Scr. Mater. 66 (2012) 634–637. doi:10.1016/j.scriptamat.2012.01.052.
[522] S. Reeh, D. Music, T. Gebhardt, M. Kasprzak, T. Jäpel, S. Zaefferer, D. Raabe, S. Richter, A. Schwedt, J. Mayer, B. Wietbrock, G. Hirt, J.M. Schneider, Elastic properties of face-centred cubic Fe-Mn-C studied by nanoindentation and ab initio calculations, Acta Mater. 60 (2012) 6025–6032. doi:10.1016/j.actamat.2012.07.038.
[523] F.U. Renner, G.N. Ankah, A. Bashir, D. Ma, P.U. Biedermann, B.R. Shrestha, M. Nellessen, A. Khorashadizadeh, P. Losada-Pérez, M.J. Duarte, D. Raabe, M. Valtiner, Star-Shaped Crystallographic Cracking of Localized Nanoporous Defects, Adv. Mater. 27 (2015) 4877–4882. doi:10.1002/adma.201405565.
[524] R.A. Renzetti, H.R.Z. Sandim, M.J.R. Sandim, A.D. Santos, A. Möslang, D. Raabe, Annealing effects on microstructure and coercive field of ferritic-martensitic ODS Eurofer steel, Mater. Sci. Eng. A. 528 (2011) 1442–1447. doi:10.1016/j.msea.2010.10.051.
[525] R.A. Renzetti, M.J.R. Sandim, H.R.Z. Sandim, K.T. Hartwig, H.H. Bernardi, D. Raabe, EBSD characterization of pure iron deformed by ECAE, in: Mater. Sci. Forum, 2010: pp. 1995–2000. doi:10.4028/www.scientific.net/MSF.638-642.1995.
[526] C. Reuber, P. Eisenlohr, F. Roters, D. Raabe, Dislocation density distribution around an indent in single-crystalline nickel: Comparing nonlocal crystal plasticity finite-element predictions with experiments, Acta Mater. 71 (2014) 333–348. doi:10.1016/j.actamat.2014.03.012.
[527] A.D. Rollett, D. Raabe, A hybrid model for mesoscopic simulation of recrystallization, Comput. Mater. Sci. 21 (2001) 69–78. doi:10.1016/S0927-0256(00)00216-0.
[528] P. Romano, H. Fabritius, D. Raabe, The exoskeleton of the lobster Homarus americanus as an example of a smart anisotropic biological material, Acta Biomater. 3 (2007) 301–309. doi:10.1016/j.actbio.2006.10.003.
[529] F. Roters, M. Diehl, P. Shanthraj, P. Eisenlohr, C. Reuber, S.L. Wong, T. Maiti, A. Ebrahimi, T. Hochrainer, H.O. Fabritius, S. Nikolov, M. Friák, N. Fujita, N. Grilli, K.G.F. Janssens, N. Jia, P.J.J. Kok, D. Ma, F. Meier, E. Werner, M. Stricker, D. Weygand, D. Raabe, DAMASK – The Düsseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale, Comput. Mater. Sci. 158 (2019) 420–478. doi:10.1016/j.commatsci.2018.04.030.
[530] F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, D. Raabe, Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications, Acta Mater. 58 (2010) 1152–1211. doi:10.1016/j.actamat.2009.10.058.
[531] F. Roters, D. Raabe, G. Gottstein, Work hardening in heterogeneous alloys - a microstructural approach based on three internal state variables, Acta Mater. 48 (2000) 4181–4189. doi:10.1016/S1359-6454(00)00289-5.
[532] F. Roters, P. Eisenlohr, T.R. Bieler, D. Raabe, Crystal Plasticity Finite Element Methods: In Materials Science and Engineering, 2010. doi:10.1002/9783527631483.
[533] F. Roters, P. Eisenlohr, T.R. Bieler, D. Raabe, Crystal Plasticity Finite Element Methods: In Materials Science and Engineering, 2010. doi:10.1002/9783527631483.
[534] F. Roters, H.S. Jeon-Haurand, D. Raabe, A texture evolution study using the texture component crystal plasticity FEM, in: Mater. Sci. Forum, 2005: pp. 937–944. doi:10.4028/www.scientific.net/msf.495-497.937.
[535] F. Roters, D. Raabe, H. Weiland, Roughening of coated aluminum sheets during plastic straining, in: Mater. Sci. Forum, 2006: pp. 711–716. doi:10.4028/www.scientific.net/msf.519-521.711.
[536] F. Roters, Y. Wang, J.C. Kuo, D. Raabe, Comparison of single crystal simple shear deformation experiments with crystal plasticity finite element simulations, Adv. Eng. Mater. 6 (2004) 653–656. doi:10.1002/adem.200400079.
[537] K.A.K. Rusitzka, L.T. Stephenson, A. Szczepaniak, L. Gremer, D. Raabe, D. Willbold, B. Gault, A near atomic-scale view at the composition of amyloid-beta fibrils by atom probe tomography, Sci. Rep. 8 (2018). doi:10.1038/s41598-018-36110-y.
[538] C. Sachs, H. Fabritius, D. Raabe, Hardness and elastic properties of dehydrated cuticle from the lobster Homarus americanus obtained by nanoindentation, J. Mater. Res. 21 (2006) 1987–1995. doi:10.1557/jmr.2006.0241.
[539] C. Sachs, H. Fabritius, D. Raabe, Influence of microstructure on deformation anisotropy of mineralized cuticle from the lobster Homarus americanus, J. Struct. Biol. 161 (2008) 120–132. doi:10.1016/j.jsb.2007.09.022.
[540] C. Sachs, H. Fabritius, D. Raabe, Experimental investigation of the elastic-plastic deformation of mineralized lobster cuticle by digital image correlation, J. Struct. Biol. 155 (2006) 409–425. doi:10.1016/j.jsb.2006.06.004.
[541] M. Sachtleber, D. Raabe, H. Weiland, Surface roughening and color changes of coated aluminum sheets during plastic straining, J. Mater. Process. Technol. 148 (2004) 68–76. doi:10.1016/j.jmatprotec.2004.01.041.
[542] M. Sachtleber, Z. Zhao, D. Raabe, Experimental investigation of plastic grain interaction, Mater. Sci. Eng. A. 336 (2002) 81–87. doi:10.1016/S0921-5093(01)01974-8.
[543] B. Sander, D. Raabe, Texture inhomogeneity in a Ti-Nb-based β-titanium alloy after warm rolling and recrystallization, Mater. Sci. Eng. A. 479 (2008) 236–247. doi:10.1016/j.msea.2007.06.077.
[544] H.R.Z. Sandim, R.E. Bolmaro, R.A. Renzetti, M.J.R. Sandim, K.T. Hartwig, S.C. Vogel, D. Raabe, Texture evolution as determined by in situ neutron diffraction during annealing of iron deformed by equal channel angular pressing, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 45 (2014) 4235–4246. doi:10.1007/s11661-014-2401-3.
[545] H.R.Z. Sandim, A.O.F. Hayama, D. Raabe, Recrystallization of the ODS superalloy PM-1000, Mater. Sci. Eng. A. 430 (2006) 172–178. doi:10.1016/j.msea.2006.05.110.
[546] H.R.Z. Sandim, D. Raabe, EBSD study of grain subdivision of a Goss grain in coarse-grained cold-rolled niobium, Scr. Mater. 53 (2005) 207–212. doi:10.1016/j.scriptamat.2005.03.045.
[547] H.R.Z. Sandim, D. Raabe, An EBSD study on orientation effects during recrystallization of coarse-grained niobium, in: Mater. Sci. Forum, 2004: pp. 519–524. doi:10.4028/www.scientific.net/msf.467-470.519.
[548] H.R.Z. Sandim, R.A. Renzetti, A.F. Padilha, A. Möslang, R. Lindau, D. Raabe, Annealing behavior of RAFM ODS-Eurofer steel, Fusion Sci. Technol. 61 (2012) 136–140. doi:10.13182/FST12-A13379.
[549] H.R.Z. Sandim, R.A. Renzetti, A.F. Padilha, D. Raabe, M. Klimenkov, R. Lindau, A. Möslang, Annealing behavior of ferritic-martensitic 9%Cr-ODS-Eurofer steel, Mater. Sci. Eng. A. 527 (2010) 3602–3608. doi:10.1016/j.msea.2010.02.051.
[550] H.R.Z. Sandim, M.J.R. Sandim, H.H. Bernardi, J.F.C. Lins, D. Raabe, Annealing effects on the microstructure and texture of a multifilamentary Cu-Nb composite wire, Scr. Mater. 51 (2004) 1099–1104. doi:10.1016/j.scriptamat.2004.07.026.
[551] H.R.Z. Sandim, A.O.F. Hayama, D. Raabe, Recrystallization behavior of the nickel-based ODS superalloy PM 1000, in: Mater. Sci. Forum, 2007: pp. 313–318. doi:10.4028/www.scientific.net/msf.558-559.313.
[552] M.J.R. Sandim, D. Stamopoulos, E. Aristomenopoulou, S. Zaefferer, D. Raabe, S. Awaji, K. Watanabe, Grain structure and irreversibility line of a bronze route CuNb reinforced NbNb3Sn multifilamentary wire, in: Phys. Procedia, 2012: pp. 1504–1509. doi:10.1016/j.phpro.2012.06.122.
[553] M.J.R. Sandim, D. Stamopoulos, H.R.Z. Sandim, L. Ghivelder, L. Thilly, V. Vidal, F. Lecouturier, D. Raabe, Size effects on the magnetic properties of Cu-Nb nanofilamentary wires processed by severe plastic deformation, Supercond. Sci. Technol. 19 (2006) 1233–1239. doi:10.1088/0953-2048/19/12/002.
[554] M.J.R. Sandim, D. Tytko, A. Kostka, P. Choi, S. Awaji, K. Watanabe, D. Raabe, Grain boundary segregation in a bronze-route Nb3Sn superconducting wire studied by atom probe tomography, Supercond. Sci. Technol. 26 (2013) 2–8. doi:10.1088/0953-2048/26/5/055008.
[555] S. Sandlöbes, M. Friák, S. Korte-Kerzel, Z. Pei, J. Neugebauer, D. Raabe, A rare-earth free magnesium alloy with improved intrinsic ductility, Sci. Rep. 7 (2017) 1–8. doi:10.1038/s41598-017-10384-0.
[556] S. Sandlöbes, M. Friák, S. Zaefferer, A. Dick, S. Yi, D. Letzig, Z. Pei, L.F. Zhu, J. Neugebauer, D. Raabe, The relation between ductility and stacking fault energies in Mg and Mg-Y alloys, Acta Mater. 60 (2012) 3011–3021. doi:10.1016/j.actamat.2012.02.006.
[557] S. Sandlöbes, Z. Pei, M. Friák, L.F. Zhu, F. Wang, S. Zaefferer, D. Raabe, J. Neugebauer, Ductility improvement of Mg alloys by solid solution: Ab initio modeling, synthesis and mechanical properties, Acta Mater. 70 (2014) 92–104. doi:10.1016/j.actamat.2014.02.011.
[558] S. Sandlöbes, M. Friák, J. Neugebauer, D. Raabe, Basal and non-basal dislocation slip in Mg–Y, Mater. Sci. Eng. A. 576 (2013) 61–68. doi:10.1016/j.msea.2013.03.006.
[559] S. Sandlöbes, S. Korte-Kerzel, D. Raabe, On the influence of the heat treatment on microstructure formation and mechanical properties of near-α Ti-Fe alloys, Mater. Sci. Eng. A. 748 (2019) 301–312. doi:10.1016/j.msea.2018.12.071.
[560] S. Sandlöbes, I. Schestakow, S. Yi, S. Zaefferer, J. Chen, M. Friák, J. Neugebauer, D. Raabe, The relation between shear banding, microstructure and mechanical properties in Mg and Mg-Y alloys, in: Mater. Sci. Forum, 2011: pp. 202–205. doi:10.4028/www.scientific.net/MSF.690.202.
[561] L. Schemmann, S. Zaefferer, D. Raabe, F. Friedel, D. Mattissen, Alloying effects on microstructure formation of dual phase steels, Acta Mater. 95 (2015) 386–398. doi:10.1016/j.actamat.2015.05.005.
[562] V. Schnabel, B.N. Jaya, M. Köhler, D. Music, C. Kirchlechner, G. Dehm, D. Raabe, J.M. Schneider, Electronic hybridisation implications for the damage-tolerance of thin film metallic glasses, Sci. Rep. 6 (2016) 1–12. doi:10.1038/srep36556.
[563] V. Schnabel, M. Köhler, S. Evertz, J. Gamcova, J. Bednarcik, D. Music, D. Raabe, J.M. Schneider, Revealing the relationships between chemistry, topology and stiffness of ultrastrong Co-based metallic glass thin films: A combinatorial approach, Acta Mater. 107 (2016) 213–219. doi:10.1016/j.actamat.2016.01.060.
[564] V. Schnabel, M. Köhler, D. Music, J. Bednarcik, W.J. Clegg, D. Raabe, J.M. Schneider, Ultra-stiff metallic glasses through bond energy density design, J. Phys. Condens. Matter. 29 (2017) 265502. doi:10.1088/1361-648X/aa72cb.
[565] M. Schwan, M. Naikade, D. Raabe, L. Ratke, From hard to rubber-like: mechanical properties of resorcinol–formaldehyde aerogels, J. Mater. Sci. 50 (2015) 5482–5493. doi:10.1007/s10853-015-9094-x.
[566] T. Schwarz, O. Cojocaru-Mirédin, P. Choi, M. Mousel, A. Redinger, S. Siebentritt, D. Raabe, Atom probe study of Cu2ZnSnSe4 thin-films prepared by co-evaporation and post-deposition annealing, Appl. Phys. Lett. 102 (2013). doi:10.1063/1.4788815.
[567] T. Schwarz, O. Cojocaru-Mirédin, M. Mousel, A. Redinger, D. Raabe, P.P. Choi, Formation of nanometer-sized Cu-Sn-Se particles in Cu2ZnSnSe4 thin-films and their effect on solar cell efficiency, Acta Mater. 132 (2017) 276–284. doi:10.1016/j.actamat.2017.04.056.
[568] T. Schwarz, M.A.L. Marques, S. Botti, M. Mousel, A. Redinger, S. Siebentritt, O. Cojocaru-Mirédin, D. Raabe, P.P. Choi, Detection of Cu2Zn5SnSe8 and Cu2Zn6SnSe9 phases in co-evaporated Cu2ZnSnSe4 thin-films, Appl. Phys. Lett. 107 (2015) 172102. doi:10.1063/1.4934847.
[569] T. Schwarz, G. Stechmann, B. Gault, O. Cojocaru-Mirédin, R. Wuerz, D. Raabe, Correlative transmission Kikuchi diffraction and atom probe tomography study of Cu(In,Ga)Se 2 grain boundaries, Prog. Photovoltaics Res. Appl. 26 (2018) 196–204. doi:10.1002/pip.2966.
[570] S.L. Semiatin, P.N. Fagin, M.G. Glavicic, D. Raabe, Deformation behavior of Waspaloy at hot-working temperatures, Scr. Mater. 50 (2004) 625–629. doi:10.1016/j.scriptamat.2003.11.030.
[571] J.B. Seol, S.H. Na, B. Gault, J.E. Kim, J.C. Han, C.G. Park, D. Raabe, Core-shell nanoparticle arrays double the strength of steel, Sci. Rep. 7 (2017) 1–9. doi:10.1038/srep42547.
[572] J.B. Seol, J.W. Bae, Z. Li, J. Chan Han, J.G. Kim, D. Raabe, H.S. Kim, Boron doped ultrastrong and ductile high-entropy alloys, Acta Mater. 151 (2018) 366–376. doi:10.1016/j.actamat.2018.04.004.
[573] J.B. Seol, D. Raabe, P. Choi, H.S. Park, J.H. Kwak, C.G. Park, Direct evidence for the formation of ordered carbides in a ferrite-based low-density Fe-Mn-Al-C alloy studied by transmission electron microscopy and atom probe tomography, Scr. Mater. 68 (2013) 348–353. doi:10.1016/j.scriptamat.2012.08.013.
[574] J.B. Seol, D. Raabe, P.P. Choi, Y.R. Im, C.G. Park, Atomic scale effects of alloying, partitioning, solute drag and austempering on the mechanical properties of high-carbon bainitic-austenitic TRIP steels, Acta Mater. 60 (2012) 6183–6199. doi:10.1016/j.actamat.2012.07.064.
[575] P. Shanthraj, L. Sharma, B. Svendsen, F. Roters, D. Raabe, A phase field model for damage in elasto-viscoplastic materials, Comput. Methods Appl. Mech. Eng. 312 (2016) 167–185. doi:10.1016/j.cma.2016.05.006.
[576] P. Shanthraj, B. Svendsen, L. Sharma, F. Roters, D. Raabe, Elasto-viscoplastic phase field modelling of anisotropic cleavage fracture, J. Mech. Phys. Solids. 99 (2017) 19–34. doi:10.1016/j.jmps.2016.10.012.
[577] P. Shanthraj, B. Svendsen, L. Sharma, F. Roters, D. Raabe, Journal of the mechanics and physics of solids, Nature. 170 (1952) 955. doi:10.1038/170955a0.
[578] P. Shanthraj, M. Diehl, P. Eisenlohr, Spectral Solvers for Crystal Plasticity and Multi-Physics Simulations Thermoelectrics View project CRC 1232 Farbige Zustände: High Throughput for Evolutionary Structural Materials View project, Handb. Mech. Mater. (2019) 1–25. doi:10.1007/978-981-10-6855-3_80-3.
[579] Y.F. Shen, N. Jia, Y.D. Wang, X. Sun, L. Zuo, D. Raabe, Suppression of twinning and phase transformation in an ultrafine grained 2 GPa strong metastable austenitic steel: Experiment and simulation, Acta Mater. 97 (2015) 305–315. doi:10.1016/j.actamat.2015.06.053.
[580] N.H. Siboni, D. Raabe, F. Varnik, Aging in amorphous solids: A study of the first-passage time and persistence time distributions, EPL. 111 (2015). doi:10.1209/0295-5075/111/48004.
[581] N.H. Siboni, D. Raabe, F. Varnik, Maintaining the equipartition theorem in small heterogeneous molecular dynamics ensembles, Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 87 (2013) 1–4. doi:10.1103/PhysRevE.87.030101.
[582] R.P. Siqueira, H.R.Z. Sandim, T.R. Oliveira, D. Raabe, Composition and orientation effects on the final recrystallization texture of coarse-grained Nb-containing AISI 430 ferritic stainless steels, Mater. Sci. Eng. A. 528 (2011) 3513–3519. doi:10.1016/j.msea.2011.01.007.
[583] S.S. Sohn, A. Kwiatkowski da Silva, Y. Ikeda, F. Körmann, W. Lu, W.S. Choi, B. Gault, D. Ponge, J. Neugebauer, D. Raabe, Ultrastrong Medium-Entropy Single-Phase Alloys Designed via Severe Lattice Distortion, Adv. Mater. 31 (2019) 1–8. doi:10.1002/adma.201807142.
[584] R. Soler, A. Evirgen, M. Yao, C. Kirchlechner, F. Stein, M. Feuerbacher, D. Raabe, G. Dehm, Microstructural and mechanical characterization of an equiatomic YGdTbDyHo high entropy alloy with hexagonal close-packed structure, Acta Mater. 156 (2018) 86–96. doi:10.1016/j.actamat.2018.06.010.
[585] J. Song, A. Kostka, M. Veehmayer, D. Raabe, Hierarchical microstructure of explosive joints: Example of titanium to steel cladding, Mater. Sci. Eng. A. 528 (2011) 2641–2647. doi:10.1016/j.msea.2010.11.092.
[586] R. Song, D. Ponge, R. Kaspar, D. Raabe, Grain boundary characterization and grain size measurement in an ultrafine-grained steel, Zeitschrift Fuer Met. Res. Adv. Tech. 95 (2004) 513–517. doi:10.3139/146.017983.
[587] R. Song, D. Ponge, D. Raabe, Mechanical properties of an ultrafine grained C-Mn steel processed by warm deformation and annealing, Acta Mater. 53 (2005) 4881–4892. doi:10.1016/j.actamat.2005.07.009.
[588] R. Song, D. Ponge, D. Raabe, Improvement of the work hardening rate of ultrafine grained steels through second phase particles, Scr. Mater. 52 (2005) 1075–1080. doi:10.1016/j.scriptamat.2005.02.016.
[589] R. Song, D. Ponge, D. Raabe, R. Kaspar, Microstructure and crystallographic texture of an ultrafine grained C-Mn steel and their evolution during warm deformation and annealing, Acta Mater. 53 (2005) 845–858. doi:10.1016/j.actamat.2004.10.051.
[590] R. Song, D. Ponge, D. Raabe, J.G. Speer, D.K. Matlock, Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels, Mater. Sci. Eng. A. 441 (2006) 1–17. doi:10.1016/j.msea.2006.08.095.
[591] R. Song, D. Ponge, D. Raabe, Influence of Mn content on the microstructure and mechanical properties of ultrafine grained C-Mn steels, ISIJ Int. 45 (2005) 1721–1726. doi:10.2355/isijinternational.45.1721.
[592] W. Song, J. Von Appen, P. Choi, R. Dronskowski, D. Raabe, W. Bleck, Atomic-scale investigation of ε and θ precipitates in bainite in 100Cr6 bearing steel by atom probe tomography and ab initio calculations, Acta Mater. 61 (2013) 7582–7590. doi:10.1016/j.actamat.2013.08.051.
[593] W. Song, P.P. Choi, G. Inden, U. Prahl, D. Raabe, W. Bleck, On the spheroidized carbide dissolution and elemental partitioning in high carbon bearing steel 100Cr6, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 45 (2014) 595–606. doi:10.1007/s11661-013-2048-5.
[594] P. Soni, O. Cojocaru-Miredin, D. Raabe, Interface engineering and nanoscale characterization of Zn(S,O) alternative buffer layer for CIGS thin film solar cells, in: 2015 IEEE 42nd Photovolt. Spec. Conf. PVSC 2015, IEEE, 2015: pp. 1–5. doi:10.1109/PVSC.2015.7355889.
[595] P. Soni, M. Raghuwanshi, R. Wuerz, B. Berghoff, J. Knoch, D. Raabe, O. Cojocaru-Mirédin, Role of elemental intermixing at the In 2 S 3 /CIGSe heterojunction deposited using reactive RF magnetron sputtering, Sol. Energy Mater. Sol. Cells. 195 (2019) 367–375. doi:10.1016/j.solmat.2019.03.026.
[596] P. Soni, M. Raghuwanshi, R. Wuerz, B. Berghoff, J. Knoch, D. Raabe, O. Cojocaru-Mirédin, Sputtering as a viable route for In2S3 buffer layer deposition in high efficiency Cu(In,Ga)Se2 solar cells, Energy Sci. Eng. 7 (2019) 478–487. doi:10.1002/ese3.295.
[597] I.R. Souza Filho, A. Kwiatkowski da Silva, M.J.R. Sandim, D. Ponge, B. Gault, H.R.Z. Sandim, D. Raabe, Martensite to austenite reversion in a high-Mn steel: Partitioning-dependent two-stage kinetics revealed by atom probe tomography, in-situ magnetic measurements and simulation, Acta Mater. 166 (2019) 178–191. doi:10.1016/j.actamat.2018.12.046.
[598] I.R. Souza Filho, M.J.R. Sandim, R. Cohen, L.C.C.M. Nagamine, H.R.Z. Sandim, D. Raabe, Magnetic properties of a 17.6 Mn-TRIP steel: Study of strain-induced martensite formation, austenite reversion, and athermal α′-formation, J. Magn. Magn. Mater. 473 (2019) 109–118. doi:10.1016/j.jmmm.2018.10.034.
[599] I.R. Souza Filho, M.J.R. Sandim, D. Ponge, H.R.Z. Sandim, D. Raabe, Strain hardening mechanisms during cold rolling of a high-Mn steel: Interplay between submicron defects and microtexture, Mater. Sci. Eng. A. 754 (2019) 636–649. doi:10.1016/j.msea.2019.03.116.
[600] H. Springer, R. Aparicio Fernandez, M.J. Duarte, A. Kostka, D. Raabe, Microstructure refinement for high modulus in-situ metal matrix composite steels via controlled solidification of the system Fe-TiB<inf>2</inf>, Acta Mater. 96 (2015) 47–56. doi:10.1016/j.actamat.2015.06.017.
[601] H. Springer, C. Baron, A. Szczepaniak, E.A. Jägle, M.B. Wilms, A. Weisheit, D. Raabe, Efficient additive manufacturing production of oxide- and nitride-dispersion-strengthened materials through atmospheric reactions in liquid metal deposition, Mater. Des. 111 (2016) 60–69. doi:10.1016/j.matdes.2016.08.084.
[602] H. Springer, C. Baron, A. Szczepaniak, V. Uhlenwinkel, D. Raabe, Stiff, light, strong and ductile: nano-structured High Modulus Steel, Sci. Rep. 7 (2017) 17–22. doi:10.1038/s41598-017-02861-3.
[603] H. Springer, M. Belde, D. Raabe, Combinatorial design of transitory constitution steels: Coupling high strength with inherent formability and weldability through sequenced austenite stability, Mater. Des. 90 (2016) 1100–1109. doi:10.1016/j.matdes.2015.11.050.
[604] H. Springer, M. Belde, D. Raabe, Bulk combinatorial design of ductile martensitic stainless steels through confined martensite-to-austenite reversion, Mater. Sci. Eng. A. 582 (2013) 235–244. doi:10.1016/j.msea.2013.06.036.
[605] H. Springer, A. Kostka, J.F. dos Santos, D. Raabe, Influence of intermetallic phases and Kirkendall-porosity on the mechanical properties of joints between steel and aluminium alloys, Mater. Sci. Eng. A. 528 (2011) 4630–4642. doi:10.1016/j.msea.2011.02.057.
[606] H. Springer, A. Kostka, E.J. Payton, D. Raabe, A. Kaysser-Pyzalla, G. Eggeler, On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys, Acta Mater. 59 (2011) 1586–1600. doi:10.1016/j.actamat.2010.11.023.
[607] H. Springer, D. Raabe, Rapid alloy prototyping: Compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn-1.2C-xAl triplex steels, Acta Mater. 60 (2012) 4950–4959. doi:10.1016/j.actamat.2012.05.017.
[608] H. Springer, A. Szczepaniak, D. Raabe, On the role of zinc on the formation and growth of intermetallic phases during interdiffusion between steel and aluminium alloys, Acta Mater. 96 (2015) 203–211. doi:10.1016/j.actamat.2015.06.028.
[609] H. Springer, C. Tasan, D. Raabe, A novel roll-bonding methodology for the cross-scale analysis of phase properties and interactions in multiphase structural materials, Int. J. Mater. Res. 106 (2015) 3–14. doi:10.3139/146.111156.
[610] G. Stechmann, S. Zaefferer, P. Konijnenberg, D. Raabe, C. Gretener, L. Kranz, J. Perrenoud, S. Buecheler, A.N. Tiwari, 3-Dimensional microstructural characterization of CdTe absorber layers from CdTe/CdS thin film solar cells, Sol. Energy Mater. Sol. Cells. 151 (2016) 66–80. doi:10.1016/j.solmat.2016.02.023.
[611] G. Stechmann, S. Zaefferer, P. Konijnenberg, D. Raabe, C. Gretener, L. Kranz, J. Perrenoud, S. Buecheler, A.N. Tiwari, 3-Dimensional microstructural characterization of CdTe absorber layers from CdTe/CdS thin film solar cells, Sol. Energy Mater. Sol. Cells. 151 (2016) 66–80. doi:10.1016/j.solmat.2016.02.023.
[612] G. Stechmann, S. Zaefferer, D. Raabe, Molecular statics simulation of CdTe grain boundary structures and energetics using a bond-order potential, Model. Simul. Mater. Sci. Eng. 26 (2018). doi:10.1088/1361-651X/aaba87.
[613] G. Stechmann, S. Zaefferer, T. Schwarz, P. Konijnenberg, D. Raabe, C. Gretener, L. Kranz, J. Perrenoud, S. Buecheler, A. Nath Tiwari, A correlative investigation of grain boundary crystallography and electronic properties in CdTe thin film solar cells, Sol. Energy Mater. Sol. Cells. 166 (2017) 108–120. doi:10.1016/j.solmat.2017.03.022.
[614] D.R. Steinmetz, T. Jäpel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed-Akbari, T. Hickel, F. Roters, D. Raabe, Revealing the strain-hardening behavior of twinning-induced plasticity steels: Theory, simulations, experiments, Acta Mater. 61 (2013) 494–510. doi:10.1016/j.actamat.2012.09.064.
[615] L.T. Stephenson, A. Szczepaniak, I. Mouton, K.A.K. Rusitzka, A.J. Breen, U. Tezins, A. Sturm, D. Vogel, Y. Chang, P. Kontis, A. Rosenthal, J.D. Shepard, U. Maier, T.F. Kelly, D. Raabe, B. Gault, The LaplacE project: An integrated suite for preparing and transferring atom probe samples under cryogenic and UHV conditions, PLoS One. 13 (2018) 1–13. doi:10.1371/journal.pone.0209211.
[616] A. Stoffers, B. Ziebarth, J. Barthel, O. Cojocaru-Mirédin, C. Elsässer, D. Raabe, Complex Nanotwin Substructure of an Asymmetric Σ9 Tilt Grain Boundary in a Silicon Polycrystal, Phys. Rev. Lett. 115 (2015) 235502. doi:10.1103/PhysRevLett.115.235502.
[617] A. Stoffers, J. Barthel, C.H. Liebscher, B. Gault, O. Cojocaru-Mirédin, C. Scheu, D. Raabe, Correlating Atom Probe Tomography with Atomic-Resolved Scanning Transmission Electron Microscopy: Example of Segregation at Silicon Grain Boundaries, in: Microsc. Microanal., 2017: pp. 291–299. doi:10.1017/S1431927617000034.
[618] A. Stoffers, O. Cojocaru-Miredin, O. Breitenstein, W. Seifert, S. Zaefferer, D. Raabe, Grain boundary characterization in multicrystalline silicon using joint EBSD, EBIC, and atom probe tomography, in: 2014 IEEE 40th Photovolt. Spec. Conf. PVSC 2014, 2014: pp. 42–46. doi:10.1109/PVSC.2014.6925089.
[619] L. Storojeva, D. Ponge, R. Kaspar, D. Raabe, Development of microstructure and texture of medium carbon steel during heavy warm deformation, Acta Mater. 52 (2004) 2209–2220. doi:10.1016/j.actamat.2004.01.024.
[620] L. Storojeva, D. Ponge, D. Raabe, R. Kaspar, On the influence of heavy warm reduction on the microstructure and mechanical properties of a medium-carbon ferritic-pearlitic steel, Zeitschrift Fuer Met. Res. Adv. Tech. 95 (2004) 1108–1114. doi:10.3139/146.018060.
[621] J. Su, D. Raabe, Z. Li, Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy, Acta Mater. 163 (2019) 40–54. doi:10.1016/j.actamat.2018.10.017.
[622] J. Su, X. Wu, D. Raabe, Z. Li, Deformation-driven bidirectional transformation promotes bulk nanostructure formation in a metastable interstitial high entropy alloy, Acta Mater. 167 (2019) 23–39. doi:10.1016/j.actamat.2019.01.030.
[623] B. Sun, Y. Ma, N. Vanderesse, R.S. Varanasi, W. Song, P. Bocher, D. Ponge, D. Raabe, Macroscopic to nanoscopic in situ investigation on yielding mechanisms in ultrafine grained medium Mn steels: Role of the austenite-ferrite interface, Acta Mater. 178 (2019) 10–25. doi:10.1016/j.actamat.2019.07.043.
[624] B. Sun, D. Palanisamy, D. Ponge, B. Gault, F. Fazeli, C. Scott, S. Yue, D. Raabe, Revealing fracture mechanisms of medium manganese steels with and without delta-ferrite, Acta Mater. 164 (2019) 683–696. doi:10.1016/j.actamat.2018.11.029.
[625] D.K. Sun, M.F. Zhu, T. Dai, W.S. Cao, S.L. Chen, D. Raabe, C.P. Hong, Modelling of dendritic growth in ternary alloy solidification with melt convection, Int. J. Cast Met. Res. 24 (2011) 177–183. doi:10.1179/136404611X13001912813988.
[626] D.K. Sun, M.F. Zhu, S.Y. Pan, C.R. Yang, D. Raabe, Lattice Boltzmann modeling of dendritic growth in forced and natural convection, Comput. Math. with Appl. 61 (2011) 3585–3592. doi:10.1016/j.camwa.2010.11.001.
[627] D. Sun, M. Zhu, S. Pan, D. Raabe, Lattice Boltzmann modeling of dendritic growth in a forced melt convection, Acta Mater. 57 (2009) 1755–1767. doi:10.1016/j.actamat.2008.12.019.
[628] B. Svendsen, P. Shanthraj, D. Raabe, Finite-deformation phase-field chemomechanics for multiphase, multicomponent solids, J. Mech. Phys. Solids. 112 (2018) 619–636. doi:10.1016/j.jmps.2017.10.005.
[629] J.G. Swadener, H. Bögershausen, B. Sander, D. Raabe, Crystal orientation effects in scratch testing with a spherical Indenter, J. Mater. Res. 25 (2010) 921–926. doi:10.1557/jmr.2010.0108.
[630] A. Szczepaniak, H. Springer, R. Aparicio-Fernández, C. Baron, D. Raabe, Strengthening Fe – TiB2 based high modulus steels by precipitations, Mater. Des. 124 (2017) 183–193. doi:10.1016/j.matdes.2017.03.042.
[631] A. Szczepaniak, J. Fan, A. Kostka, D. Raabe, On the correlation between thermal cycle and formation of intermetallic phases at the interface of laser-welded aluminum-steel overlap joints, Adv. Eng. Mater. 14 (2012) 464–472. doi:10.1002/adem.201200075.
[632] J. Takahashi, K. Kawakami, D. Raabe, Comparison of the quantitative analysis performance between pulsed voltage atom probe and pulsed laser atom probe, Ultramicroscopy. 175 (2017) 105–110. doi:10.1016/j.ultramic.2017.01.015.
[633] T. Takahashi, D. Ponge, D. Raabe, Investigation of orientation gradients in pearlite in hypoeutectoid steel by use of orientation imaging microscopy, Steel Res. Int. 78 (2007) 38–44. doi:10.1002/srin.200705857.
[634] X.D. Tan, Y.B. Xu, D. Ponge, X.L. Yang, Z.P. Hu, F. Peng, X.W. Ju, D. Wu, D. Raabe, Effect of intercritical deformation on microstructure and mechanical properties of a low-silicon aluminum-added hot-rolled directly quenched and partitioned steel, Mater. Sci. Eng. A. 656 (2016) 200–215. doi:10.1016/j.msea.2016.01.040.
[635] X. Tan, D. Ponge, W. Lu, Y. Xu, X. Yang, X. Rao, D. Wu, D. Raabe, Carbon and strain partitioning in a quenched and partitioned steel containing ferrite, Acta Mater. 165 (2019) 561–576. doi:10.1016/j.actamat.2018.12.019.
[636] S. Tang, J.C. Wang, B. Svendsen, D. Raabe, Competitive bcc and fcc crystal nucleation from non-equilibrium liquids studied by phase-field crystal simulation, Acta Mater. 139 (2017) 196–204. doi:10.1016/j.actamat.2017.08.015.
[637] Z. Tarzimoghadam, D. Ponge, J. Klöwer, D. Raabe, Hydrogen-assisted failure in Ni-based superalloy 718 studied under in situ hydrogen charging: The role of localized deformation in crack propagation, Acta Mater. 128 (2017) 365–374. doi:10.1016/j.actamat.2017.02.059.
[638] Z. Tarzimoghadam, M. Rohwerder, S. V. Merzlikin, A. Bashir, L. Yedra, S. Eswara, D. Ponge, D. Raabe, Multi-scale and spatially resolved hydrogen mapping in a Ni-Nb model alloy reveals the role of the δ phase in hydrogen embrittlement of alloy 718, Acta Mater. 109 (2016) 69–81. doi:10.1016/j.actamat.2016.02.053.
[639] Z. Tarzimoghadam, S. Sandlöbes, K.G. Pradeep, D. Raabe, Microstructure design and mechanical properties in a near-α Ti-4Mo alloy, Acta Mater. 97 (2015) 291–304. doi:10.1016/j.actamat.2015.06.043.
[640] C.C. Tasan, Y. Deng, K.G. Pradeep, M.J. Yao, H. Springer, D. Raabe, Composition Dependence of Phase Stability, Deformation Mechanisms, and Mechanical Properties of the CoCrFeMnNi High-Entropy Alloy System, JOM. 66 (2014) 1993–2001. doi:10.1007/s11837-014-1133-6.
[641] C.C. Tasan, M. Diehl, D. Yan, C. Zambaldi, P. Shanthraj, F. Roters, D. Raabe, Integrated experimental-simulation analysis of stress and strain partitioning in multiphase alloys, Acta Mater. 81 (2014) 386–400. doi:10.1016/j.actamat.2014.07.071.
[642] C.C.C. Tasan, J.P.M.P.M. Hoefnagels, M. Diehl, D. Yan, F. Roters, D. Raabe, Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations, Int. J. Plast. 63 (2014) 198–210. doi:10.1016/j.ijplas.2014.06.004.
[643] C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, D. Raabe, An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design, Annu. Rev. Mater. Res. 45 (2015) 391–431. doi:10.1146/annurev-matsci-070214-021103.
[644] I. Thomas, S. Zaefferer, F. Friedel, D. Raabe, High-Resolution EBSD Investigation of Deformed and Partially Recrystallized IF Steel, Adv. Eng. Mater. 5 (2003) 566–570. doi:10.1002/adem.200300373.
[645] I. Tikhovskiy, D. Raabe, F. Roters, Simulation of earing during deep drawing of an Al-3% Mg alloy (AA 5754) using a texture component crystal plasticity FEM, J. Mater. Process. Technol. 183 (2007) 169–175. doi:10.1016/j.jmatprotec.2006.10.006.
[646] I. Tikhovskiy, D. Raabe, F. Roters, Simulation of the deformation texture of a 17%Cr ferritic stainless steel using the texture component crystal plasticity finite element method considering texture gradients, Scr. Mater. 54 (2006) 1537–1542. doi:10.1016/j.scriptamat.2005.12.038.
[647] I. Tikhovskiy, D. Raabe, F. Roters, Simulation of earing of a 17% Cr stainless steel considering texture gradients, Mater. Sci. Eng. A. 488 (2008) 482–490. doi:10.1016/j.msea.2007.11.063.
[648] I.B. Timokhina, K.D. Liss, D. Raabe, K. Rakha, H. Beladi, X.Y. Xiong, P.D. Hodgson, Growth of bainitic ferrite and carbon partitioning during the early stages of bainite transformation in a 2 mass% silicon steel studied by in situ neutron diffraction, TEM and APT, J. Appl. Crystallogr. 49 (2016) 399–414. doi:10.1107/S1600576716000418.
[649] Y. Toji, H. Matsuda, M. Herbig, P.P. Choi, D. Raabe, Atomic-scale analysis of carbon partitioning between martensite and austenite by atom probe tomography and correlative transmission electron microscopy, Acta Mater. 65 (2014) 215–228. doi:10.1016/j.actamat.2013.10.064.
[650] Y. Toji, H. Matsuda, D. Raabe, Effect of Si on the acceleration of bainite transformation by pre-existing martensite, Acta Mater. 116 (2016) 250–262. doi:10.1016/j.actamat.2016.06.044.
[651] Y. Toji, H. Matsuda, D. Raabe, Effect of Si on the acceleration of bainite transformation by pre-existing martensite, Acta Mater. 116 (2016) 250–262. doi:10.1016/j.actamat.2016.06.044.
[652] Y. Toji, G. Miyamoto, D. Raabe, Carbon partitioning during quenching and partitioning heat treatment accompanied by carbide precipitation, Acta Mater. 86 (2015) 137–147. doi:10.1016/j.actamat.2014.11.049.
[653] L.S. Tóth, A. Molinari, D. Raabe, Modeling of rolling texture development in a ferritic chromium steel, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 28 (1997) 2343–2351. doi:10.1007/s11661-997-0191-6.
[654] D. Tytko, P.P. Choi, J. Klöwer, A. Kostka, G. Inden, D. Raabe, Microstructural evolution of a Ni-based superalloy (617B) at 700 °c studied by electron microscopy and atom probe tomography, Acta Mater. 60 (2012) 1731–1740. doi:10.1016/j.actamat.2011.11.020.
[655] D. Tytko, P.P. Choi, D. Raabe, Thermal dissolution mechanisms of AlN/CrN hard coating superlattices studied by atom probe tomography and transmission electron microscopy, Acta Mater. 85 (2015) 32–41. doi:10.1016/j.actamat.2014.11.004.
[656] D. Tytko, P.-P. Choi, D. Raabe, Oxidation behavior of AlN/CrN multilayered hard coatings, Nano Converg. 4 (2017) 2–6. doi:10.1186/s40580-017-0109-y.
[657] F. Varnik, M. Gross, N. Moradi, G. Zikos, P. Uhlmann, P. Müller-Buschbaum, D. Magerl, D. Raabe, I. Steinbach, M. Stamm, Stability and dynamics of droplets on patterned substrates: Insights from experiments and lattice Boltzmann simulations, J. Phys. Condens. Matter. 23 (2011). doi:10.1088/0953-8984/23/18/184112.
[658] F. Varnik, D. Raabe, Chaotic flows in microchannels: A lattice Boltzmann study, in: Mol. Simul., 2007: pp. 583–587. doi:10.1080/08927020601030456.
[659] F. Varnik, D. Raabe, Profile blunting and flow blockage in a yield-stress fluid: A molecular dynamics study, Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 77 (2008) 1–9. doi:10.1103/PhysRevE.77.011504.
[660] F. Varnik, S. Mandal, V. Chikkadi, D. Denisov, P. Olsson, D. Vågberg, D. Raabe, P. Schall, Correlations of plasticity in sheared glasses, Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 89 (2014) 1–5. doi:10.1103/PhysRevE.89.040301.
[661] F. Varnik, D. Raabe, Scaling effects in microscale fluid flows at rough solid surfaces, Model. Simul. Mater. Sci. Eng. 14 (2006) 857–873. doi:10.1088/0965-0393/14/5/004.
[662] F. Varnik, P. Truman, B. Wu, P. Uhlmann, D. Raabe, M. Stamm, Wetting gradient induced separation of emulsions: A combined experimental and lattice Boltzmann computer simulation study, Phys. Fluids. 20 (2008) 1–14. doi:10.1063/1.2963958.
[663] K. Verbeken, N. Van Caenegem, D. Raabe, Identification of ε martensite in a Fe-based shape memory alloy by means of EBSD, Micron. 40 (2009) 151–156. doi:10.1016/j.micron.2007.12.012.
[664] K. Verbeken, L. Barbé, D. Raabe, Crystalligraphic characterization of a phosphorus added TRIP steel, in: Ceram. Trans., 2008: pp. 333–340.
[665] K. Verbeken, L. Barbé, D. Raabe, Evaluation of the crystallographic orientation relationships between FCC and BCC phases in TRIP steels, ISIJ Int. 49 (2009) 1601–1609. doi:10.2355/isijinternational.49.1601.
[666] N. Volz, C.H. Zenk, R. Cherukuri, T. Kalfhaus, M. Weiser, S.K. Makineni, C. Betzing, M. Lenz, B. Gault, S.G. Fries, J. Schreuer, R. Vaßen, S. Virtanen, D. Raabe, E. Spiecker, S. Neumeier, M. Göken, Thermophysical and Mechanical Properties of Advanced Single Crystalline Co-base Superalloys, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 49 (2018) 4099–4109. doi:10.1007/s11661-018-4705-1.
[667] D. Wang, M. Diehl, F. Roters, D. Raabe, On the role of the collinear dislocation interaction in deformation patterning and laminate formation in single crystal plasticity, Mech. Mater. 125 (2018) 70–79. doi:10.1016/j.mechmat.2018.06.007.
[668] D. Wang, P. Shanthraj, H. Springer, D. Raabe, Particle-induced damage in Fe–TiB2 high stiffness metal matrix composite steels, Mater. Des. 160 (2018) 557–571. doi:10.1016/j.matdes.2018.09.033.
[669] F. Wang, S. Sandlöbes, M. Diehl, L. Sharma, F. Roters, D. Raabe, In situ observation of collective grain-scale mechanics in Mg and Mg-rare earth alloys, Acta Mater. 80 (2014) 77–93. doi:10.1016/j.actamat.2014.07.048.
[670] M.M. Wang, C.C. Tasan, D. Ponge, A.C. Dippel, D. Raabe, Nanolaminate transformation-induced plasticity-twinning-induced plasticity steel with dynamic strain partitioning and enhanced damage resistance, Acta Mater. 85 (2015) 216–228. doi:10.1016/j.actamat.2014.11.010.
[671] M.M. Wang, C.C. Tasan, D. Ponge, A. Kostka, D. Raabe, Smaller is less stable: Size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels, Acta Mater. 79 (2014) 268–281. doi:10.1016/j.actamat.2014.07.020.
[672] M.M. Wang, C.C. Tasan, D. Ponge, D. Raabe, Spectral TRIP enables ductile 1.1 GPa martensite, Acta Mater. 111 (2016) 262–272. doi:10.1016/j.actamat.2016.03.070.
[673] M. Wang, Z. Li, D. Raabe, In-situ SEM observation of phase transformation and twinning mechanisms in an interstitial high-entropy alloy, Acta Mater. 147 (2018) 236–246. doi:10.1016/j.actamat.2018.01.036.
[674] M. Wang, C.C. Tasan, M. Koyama, D. Ponge, D. Raabe, Enhancing Hydrogen Embrittlement Resistance of Lath Martensite by Introducing Nano-Films of Interlath Austenite, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 46 (2015) 3797–3802. doi:10.1007/s11661-015-3009-y.
[675] Y. Wang, D. Raabe, C. Klüber, F. Roters, Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals, Acta Mater. 52 (2004) 2229–2238. doi:10.1016/j.actamat.2004.01.016.
[676] Z. Wang, W. Lu, D. Raabe, Z. Li, On the mechanism of extraordinary strain hardening in an interstitial high-entropy alloy under cryogenic conditions, J. Alloys Compd. 781 (2019) 734–743. doi:10.1016/j.jallcom.2018.12.061.
[677] F. Weber, I. Schestakow, F. Roters, D. Raabe, Texture evolution during bending of a single crystal copper nanowire studied by EBSD and crystal plasticity finite element simulations, Adv. Eng. Mater. 10 (2008) 737–741. doi:10.1002/adem.200800102.
[678] Y. Wei, B. Gault, R.S. Varanasi, D. Raabe, M. Herbig, A.J. Breen, Machine-learning-based atom probe crystallographic analysis, Ultramicroscopy. 194 (2018) 15–24. doi:10.1016/j.ultramic.2018.06.017.
[679] H. Weiland, J. Nardiello, S. Zaefferer, S. Cheong, J. Papazian, D. Raabe, Microstructural aspects of crack nucleation during cyclic loading of AA7075-T651, Eng. Fract. Mech. 76 (2009) 709–714. doi:10.1016/j.engfracmech.2008.11.012.
[680] E. Welsch, D. Ponge, S.M. Hafez Haghighat, S. Sandlöbes, P. Choi, M. Herbig, S. Zaefferer, D. Raabe, Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel, Acta Mater. 116 (2016) 188–199. doi:10.1016/j.actamat.2016.06.037.
[681] Y.H. Wen, H.B. Peng, D. Raabe, I. Gutierrez-Urrutia, J. Chen, Y.Y. Du, Large recovery strain in Fe-Mn-Si-based shape memory steels obtained by engineering annealing twin boundaries, Nat. Commun. 5 (2014) 1–2. doi:10.1038/ncomms5964.
[682] Y.H. Wen, H.B. Peng, H.T. Si, R.L. Xiong, D. Raabe, A novel high manganese austenitic steel with higher work hardening capacity and much lower impact deformation than Hadfield manganese steel, Mater. Des. 55 (2014) 798–804. doi:10.1016/j.matdes.2013.09.057.
[683] M. Winning, D. Raabe, Influence of grain boundary mobility on microstructure evolution during recrystallisation, in: Mater. Sci. Forum, 2012: pp. 191–196. doi:10.4028/www.scientific.net/MSF.715-716.191.
[684] M. Winning, D. Raabe, A. Brahme, A texture component model for predicting recrystallization textures, in: Mater. Sci. Forum, 2007: pp. 1035–1042. doi:10.4028/www.scientific.net/msf.558-559.1035.
[685] M.T. Woldemedhin, D. Raabe, A.W. Hassel, Characterization of thin anodic oxides of Ti-Nb alloys by electrochemical impedance spectroscopy, in: Electrochim. Acta, Elsevier Ltd, 2012: pp. 324–332. doi:10.1016/j.electacta.2012.06.029.
[686] M.T. Woldemedhin, D. Raabe, A.W. Hassel, Anodic oxides on a beta type Nb-Ti alloy and their characterization by electrochemical impedance spectroscopy, Phys. Status Solidi Appl. Mater. Sci. 207 (2010) 812–816. doi:10.1002/pssa.200983324.
[687] S.L. Wong, M. Madivala, U. Prahl, F. Roters, D. Raabe, A crystal plasticity model for twinning- and transformation-induced plasticity, Acta Mater. 118 (2016) 140–151. doi:10.1016/j.actamat.2016.07.032.
[688] W. Wu, M.F. Zhu, D.K. Sun, T. Dai, Q.Y. Han, D. Raabe, Modelling of dendritic growth and bubble formation, in: IOP Conf. Ser. Mater. Sci. Eng., 2012: pp. 1–8. doi:10.1088/1757-899X/33/1/012103.
[689] X. Wu, A. Erbe, D. Raabe, H.O. Fabritius, Extreme optical properties tuned through phase substitution in a structurally optimized biological photonic polycrystal, Adv. Funct. Mater. 23 (2013) 3615–3620. doi:10.1002/adfm.201203597.
[690] X. Wu, D. Ma, P. Eisenlohr, D. Raabe, H.O. Fabritius, From insect scales to sensor design: Modelling the mechanochromic properties of bicontinuous cubic structures, Bioinspiration and Biomimetics. 11 (2016). doi:10.1088/1748-3190/11/4/045001.
[691] X. Wu, S.K. Makineni, P. Kontis, G. Dehm, D. Raabe, B. Gault, G. Eggeler, On the segregation of Re at dislocations in the γ’ phase of Ni-based single crystal superalloys, Materialia. 4 (2018) 109–114. doi:10.1016/j.mtla.2018.09.018.
[692] D. Yan, C.C. Tasan, D. Raabe, High resolution in situ mapping of microstrain and microstructure evolution reveals damage resistance criteria in dual phase steels, Acta Mater. 96 (2015) 399–409. doi:10.1016/j.actamat.2015.05.038.
[693] F.K. Yan, N.R. Tao, F. Archie, I. Gutierrez-Urrutia, D. Raabe, K. Lu, Deformation mechanisms in an austenitic single-phase duplex microstructured steel with nanotwinned grains, Acta Mater. 81 (2014) 487–500. doi:10.1016/j.actamat.2014.08.054.
[694] F. Yan, I. Mouton, L.T. Stephenson, A.J. Breen, Y. Chang, D. Ponge, D. Raabe, B. Gault, Atomic-scale investigation of hydrogen distribution in a Ti–Mo alloy, Scr. Mater. 162 (2019) 321–325. doi:10.1016/j.scriptamat.2018.11.040.
[695] M.J. Yao, P. Dey, J.B. Seol, P. Choi, M. Herbig, R.K.W. Marceau, T. Hickel, J. Neugebauer, D. Raabe, Combined atom probe tomography and density functional theory investigation of the Al off-stoichiometry of κ-carbides in an austenitic Fe-Mn-Al-C low density steel, Acta Mater. 106 (2016) 229–238. doi:10.1016/j.actamat.2016.01.007.
[696] M.J. Yao, K.G. Pradeep, C.C. Tasan, D. Raabe, A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility, Scr. Mater. 72–73 (2014) 5–8. doi:10.1016/j.scriptamat.2013.09.030.
[697] M.J. Yao, E. Welsch, D. Ponge, S.M.H. Haghighat, S. Sandlöbes, P. Choi, M. Herbig, I. Bleskov, T. Hickel, M. Lipinska-Chwalek, P. Shanthraj, C. Scheu, S. Zaefferer, B. Gault, D. Raabe, Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel, Acta Mater. 140 (2017) 258–273. doi:10.1016/j.actamat.2017.08.049.
[698] V. Yardley, I. Povstugar, P.P. Choi, D. Raabe, A.B. Parsa, A. Kostka, C. Somsen, A. Dlouhy, K. Neuking, E.P. George, G. Eggeler, On Local Phase Equilibria and the Appearance of Nanoparticles in the Microstructure of Single-Crystal Ni-Base Superalloys, Adv. Eng. Mater. 18 (2016) 1556–1567. doi:10.1002/adem.201600237.
[699] Y. Yu, S. Zhang, A.M. Mio, B. Gault, A. Sheskin, C. Scheu, D. Raabe, F. Zu, M. Wuttig, Y. Amouyal, O. Cojocaru-Mirédin, Ag-Segregation to Dislocations in PbTe-Based Thermoelectric Materials, ACS Appl. Mater. Interfaces. 10 (2018) 3609–3615. doi:10.1021/acsami.7b17142.
[700] L. Yuan, D. Ponge, J. Wittig, P. Choi, J.A. Jiménez, D. Raabe, Nanoscale austenite reversion through partitioning, segregation and kinetic freezing: Example of a ductile 2 GPa Fe-Cr-C steel, Acta Mater. 60 (2012) 2790–2804. doi:10.1016/j.actamat.2012.01.045.
[701] N. Zaafarani, D. Raabe, F. Roters, S. Zaefferer, On the origin of deformation-induced rotation patterns below nanoindents, Acta Mater. 56 (2008) 31–42. doi:10.1016/j.actamat.2007.09.001.
[702] N. Zaafarani, D. Raabe, R.N. Singh, F. Roters, S. Zaefferer, Three-dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations, Acta Mater. 54 (2006) 1863–1876. doi:10.1016/j.actamat.2005.12.014.
[703] N. Zaafarani, F. Roters, D. Raabe, Recent progress in the 3D experimentation and simulation of nanoindents, in: Mater. Sci. Forum, 2007: pp. 199–204. doi:10.4028/0-87849-434-0.199.
[704] S. Zaefferer, J.C. Kuo, Z. Zhao, M. Winning, D. Raabe, On the influence of the grain boundary misorientation on the plastic deformation of aluminum bicrystals, Acta Mater. 51 (2003) 4719–4735. doi:10.1016/S1359-6454(03)00259-3.
[705] S. Zaefferer, S.I. Wright, D. Raabe, Three-dimensional orientation microscopy in a focused ion beam-scanning electron microscope: A new dimension of microstructure characterization, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 39 (2008) 374–389. doi:10.1007/s11661-007-9418-9.
[706] D. Zahn, H. Tlatlik, D. Raabe, Modeling of dislocation patterns of small- and high-angle grain boundaries in aluminum, Comput. Mater. Sci. 46 (2009) 293–296. doi:10.1016/j.commatsci.2009.02.036.
[707] C. Zambaldi, D. Raabe, Plastic anisotropy of γ-TiAl revealed by axisymmetric indentation, Acta Mater. 58 (2010) 3516–3530. doi:10.1016/j.actamat.2010.02.025.
[708] C. Zambaldi, F. Roters, D. Raabe, Analysis of the plastic anisotropy and pre-yielding of (γ/ α2)-phase titanium aluminide microstructures by crystal plasticity simulation, Intermetallics. 19 (2011) 820–827. doi:10.1016/j.intermet.2011.01.012.
[709] C. Zambaldi, F. Roters, D. Raabe, U. Glatzel, Modeling and experiments on the indentation deformation and recrystallization of a single-crystal nickel-base superalloy, Mater. Sci. Eng. A. 454–455 (2007) 433–440. doi:10.1016/j.msea.2006.11.068.
[710] C. Zambaldi, C. Zehnder, D. Raabe, Orientation dependent deformation by slip and twinning in magnesium during single crystal indentation, Acta Mater. 91 (2015) 267–288. doi:10.1016/j.actamat.2015.01.046.
[711] C. Zambaldi, Y. Yang, T.R. Bieler, D. Raabe, Orientation informed nanoindentation of α-titanium: Indentation pileup in hexagonal metals deforming by prismatic slip, J. Mater. Res. 27 (2012) 356–367. doi:10.1557/jmr.2011.334.
[712] C.H. Zenk, I. Povstugar, R. Li, F. Rinaldi, S. Neumeier, D. Raabe, M. Göken, A novel type of Co–Ti–Cr-base γ/γ′ superalloys with low mass density, Acta Mater. 135 (2017) 244–251. doi:10.1016/j.actamat.2017.06.024.
[713] H. Zhang, B. Bai, D. Raabe, Superplastic martensitic Mn-Si-Cr-C steel with 900% elongation, Acta Mater. 59 (2011) 5787–5802. doi:10.1016/j.actamat.2011.05.055.
[714] H. Zhang, D. Ponge, D. Raabe, Superplastic Mn-Si-Cr-C duplex and triplex steels: Interaction of microstructure and void formation, Mater. Sci. Eng. A. 610 (2014) 355–369. doi:10.1016/j.msea.2014.05.061.
[715] H. Zhang, D. Ponge, D. Raabe, Designing quadplex (four-phase) microstructures in an ultrahigh carbon steel, Mater. Sci. Eng. A. 612 (2014) 46–53. doi:10.1016/j.msea.2014.06.023.
[716] H. Zhang, K.G. Pradeep, S. Mandal, D. Ponge, P. Choi, C.C. Tasan, D. Raabe, Enhanced superplasticity in an Al-alloyed multicomponent Mn-Si-Cr-C steel, Acta Mater. 63 (2014) 232–244. doi:10.1016/j.actamat.2013.10.034.
[717] H. Zhang, K.G. Pradeep, S. Mandal, D. Ponge, D. Raabe, New insights into the austenitization process of low-alloyed hypereutectoid steels: Nucleation analysis of strain-induced austenite formation, Acta Mater. 80 (2014) 296–308. doi:10.1016/j.actamat.2014.07.073.
[718] H. Zhang, K.G. Pradeep, S. Mandal, D. Ponge, H. Springer, D. Raabe, Dynamic strain-induced transformation: An atomic scale investigation, Scr. Mater. 109 (2015) 23–27. doi:10.1016/j.scriptamat.2015.07.010.
[719] H. Zhang, H. Springer, R. Aparicio-Fernández, D. Raabe, Improving the mechanical properties of Fe – TiB 2 high modulus steels through controlled solidification processes, Acta Mater. 118 (2016) 187–195. doi:10.1016/j.actamat.2016.07.056.
[720] H. Zhang, H. Springer, R. Aparicio-Fernández, D. Raabe, Improving the mechanical properties of Fe – TiB 2 high modulus steels through controlled solidification processes, Acta Mater. 118 (2016) 187–195. doi:10.1016/j.actamat.2016.07.056.
[721] H. Zhang, M. Diehl, F. Roters, D. Raabe, A virtual laboratory using high resolution crystal plasticity simulations to determine the initial yield surface for sheet metal forming operations, Int. J. Plast. 80 (2016) 111–138. doi:10.1016/j.ijplas.2016.01.002.
[722] J.L. Zhang, C.C. Tasan, M.J. Lai, D. Yan, D. Raabe, Partial recrystallization of gum metal to achieve enhanced strength and ductility, Acta Mater. 135 (2017) 400–410. doi:10.1016/j.actamat.2017.06.051.
[723] J.L. Zhang, C.C. Tasan, M.L. Lai, J. Zhang, D. Raabe, Damage resistance in gum metal through cold work-induced microstructural heterogeneity, J. Mater. Sci. 50 (2015) 5694–5708. doi:10.1007/s10853-015-9105-y.
[724] J.L. Zhang, S. Zaefferer, D. Raabe, A study on the geometry of dislocation patterns in the surrounding of nanoindents in a TWIP steel using electron channeling contrast imaging and discrete dislocation dynamics simulations, Mater. Sci. Eng. A. 636 (2015) 231–242. doi:10.1016/j.msea.2015.03.078.
[725] J. Zhang, C.C. Tasan, M.J. Lai, A.C. Dippel, D. Raabe, Complexion-mediated martensitic phase transformation in Titanium, Nat. Commun. 8 (2017) 1–8. doi:10.1038/ncomms14210.
[726] J. Zhang, D. Raabe, C.C. Tasan, Designing duplex, ultrafine-grained Fe-Mn-Al-C steels by tuning phase transformation and recrystallization kinetics, Acta Mater. 141 (2017) 374–387. doi:10.1016/j.actamat.2017.09.026.
[727] S. Zhang, H. Fang, M.E. Gramsma, C. Kwakernaak, W.G. Sloof, F.D. Tichelaar, M. Kuzmina, M. Herbig, D. Raabe, E. Brück, S. van der Zwaag, N.H. van Dijk, Autonomous Filling of Grain-Boundary Cavities during Creep Loading in Fe-Mo Alloys, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 47 (2016) 4831–4844. doi:10.1007/s11661-016-3642-0.
[728] S. Zhang, C. Kwakernaak, F.D. Tichelaar, W.G. Sloof, M. Kuzmina, M. Herbig, D. Raabe, E. Brück, S. van der Zwaag, N.H. van Dijk, Autonomous Repair Mechanism of Creep Damage in Fe-Au and Fe-Au-B-N Alloys, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 46 (2015) 5656–5670. doi:10.1007/s11661-015-3169-9.
[729] H. Zhao, F. De Geuser, A. Kwiatkowski da Silva, A. Szczepaniak, B. Gault, D. Ponge, D. Raabe, Segregation assisted grain boundary precipitation in a model Al-Zn-Mg-Cu alloy, Acta Mater. 156 (2018) 318–329. doi:10.1016/j.actamat.2018.07.003.
[730] H. Zhao, B. Gault, D. Ponge, D. Raabe, F. De Geuser, Parameter free quantitative analysis of atom probe data by correlation functions: Application to the precipitation in Al-Zn-Mg-Cu, Scr. Mater. 154 (2018) 106–110. doi:10.1016/j.scriptamat.2018.05.024.
[731] Z. Zhao, W. Mao, F. Roters, D. Raabe, A texture optimization study for minimum earing in aluminium by use of a texture component crystal plasticity finite element method, Acta Mater. 52 (2004) 1003–1012. doi:10.1016/j.actamat.2003.03.001.
[732] Z. Zhao, M. Ramesh, D. Raabe, A.M. Cuitiño, R. Radovitzky, Investigation of three-dimensional aspects of grain-scale plastic surface deformation of an aluminum oligocrystal, Int. J. Plast. 24 (2008) 2278–2297. doi:10.1016/j.ijplas.2008.01.002.
[733] Z. Zhao, F. Roters, W. Mao, D. Raabe, Introduction of a texture component crystal plasticity finite element method for anisotropy simulations, Adv. Eng. Mater. 3 (2001) 984–990. doi:10.1002/1527-2648(200112)3:12<984::AID-ADEM984>3.0.CO;2-L.
[734] C. Zheng, D. Raabe, Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: A cellular automaton model, Acta Mater. 61 (2013) 5504–5517. doi:10.1016/j.actamat.2013.05.040.
[735] C. Zheng, D. Raabe, D. Li, Prediction of post-dynamic austenite-to-ferrite transformation and reverse transformation in a low-carbon steel by cellular automaton modeling, Acta Mater. 60 (2012) 4768–4779. doi:10.1016/j.actamat.2012.06.007.
[736] M. Zhu, D. Sun, S. Pan, Q. Zhang, D. Raabe, Modelling of dendritic growth during alloy solidification under natural convection, Model. Simul. Mater. Sci. Eng. 22 (2014). doi:10.1088/0965-0393/22/3/034006.
[737] K.D. Zilnyk, D.R. Almeida Junior, H.R.Z. Sandim, P.R. Rios, D. Raabe, Misorientation distribution between martensite and austenite in Fe-31 wt%Ni-0.01 wt%C, Acta Mater. 143 (2018) 227–236. doi:10.1016/j.actamat.2017.10.026.
[738] K.D. Zilnyk, K.G. Pradeep, P. Choi, H.R.Z. Sandim, D. Raabe, Long-term thermal stability of nanoclusters in ODS-Eurofer steel: An atom probe tomography study, J. Nucl. Mater. 492 (2017) 142–147. doi:10.1016/j.jnucmat.2017.05.027.
[739] K.D. Zilnyk, H.R.Z. Sandim, R.E. Bolmaro, R. Lindau, A. Möslang, A. Kostka, D. Raabe, Long-term microstructural stability of oxide-dispersion strengthened Eurofer steel annealed at 800 °c, J. Nucl. Mater. 448 (2014) 33–42. doi:10.1016/j.jnucmat.2014.01.032.